Skip to main content

Advertisement

Log in

Hormone replacement therapy leads to increased plasma levels of platelet derived microparticles in postmenopausal women

  • General Gynecology
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Background

Whereas prevention of cardiovascular diseases by hormonal replacement therapy is still part of an ongoing debate, well-defined data are available relating hormonal replacement therapy to an elevated risk of venous thrombosis and embolism. Although it seems that venous thrombosis in patients treated with hormonal replacement therapy is linked to changes in plasmatic coagulation, less is known about the role of platelet-derived microparticles, as well as endothelial cell-derived microparticles.

Patients and methods

In this prospective case–control study, levels of microparticles were investigated in postmenopausal women receiving hormone replacement therapy (n = 15) and compared to age-matched controls (n = 15).

Results

Total count of microparticles and the subgroup of microparticles derived from endothelial cells did not differ in the investigated groups. In contrast, median levels of microparticles derived from platelet/megacaryocyte were higher in women taking hormonal replacement therapy (5,244 × 106/l) than in controls (2,803 × 106/l; p = 0.040). Furthermore, hormonal replacement therapy led to a higher plasma level of microparticles derived from activated platelets, exposing P-selectin (136 × 106/l vs. 58 × 106/l; p = 0.011), or exposing CD63 (171 × 106 vs. 91 × 106/l; p = 0.011) compared to the control group.

Conclusion

Higher concentrations of microparticles derived from (activated) platelets/megacaryocytes were present in postmenopausal women taking hormonal replacement therapy. This finding indicates a procoagulant state in these women and might play a role in the development of venous side effects. In contrast, levels of endothelial cell-derived microparticles did not differ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hickey M, Davis SR, Sturdee DW (2005) Treatment of menopausal symptoms: what shall we do now? Lancet 366:409–421

    Article  PubMed  Google Scholar 

  2. Bagger YZ, Tanko LB, Alexandersen P, Hansen HB, Mollgaard A, Ravn P, Qvist P, Kanis JA, Christiansen C (2004) Two to three years of hormone replacement treatment in healthy women have long-term preventive effects on bone mass and osteoporotic fractures: the PERF study. Bone 34:728–735

    Article  PubMed  CAS  Google Scholar 

  3. (1997) Collaborative Group on Hormonal Factors in Breast Cancer: breast cancer and hormone replacement therapy: collaborative reanalysis of data from 51 epidemiological studies of 52,705 women with breast cancer and 108,411 women without breast cancer. Lancet 350:1047–1059

  4. Bath P, Gray LJ (2005) Association between hormone replacement therapy and subsequent stroke: a meta analysis. BMJ 330:342

    Article  PubMed  Google Scholar 

  5. Canonico M, Plu-Bureau G, Lowe GD, Scarabin PY (2008) Hormone replacement therapy and risk for venous thromboembolism in postmenopausal women: systematic review and meta-analysis. BMJ 336(7655):1227–1231

    Article  PubMed  Google Scholar 

  6. Sandset PM, Høibraaten E, Eilertsen AL, Dahm A (2009) Mechanisms of thrombosis related to hormone therapy. Thromb Res 123(Suppl 2):S70–S73

    Article  PubMed  Google Scholar 

  7. Scarabin PY, Oger E, Plu-Bureau G, Estrogen and Thromboembolism Risk Study Group (2003) Differential association of oral and transdermal oestrogen-replacement therapy with venous thromboembolism risk. Lancet 362(9382):428–432

    Article  PubMed  CAS  Google Scholar 

  8. Høibraaten E, Mowinckel MC, de Ronde H, Bertina RM, Sandset PM (2001) Hormone replacement therapy and acquired resistance to activated protein C: results of a randomized, double-blind, placebo-controlled trial. Br J Haematol 115(2):415–420

    Article  PubMed  Google Scholar 

  9. Rosano GM, Vitale C, Fini M (2006) Hormone replacement therapy and cardioprotection: what is good and what is bad for the cardiovascular system? Ann N Y Acad Sci 1092:341–348

    Article  PubMed  CAS  Google Scholar 

  10. Arnal JF, Douin-Echinard V, Tremollières F (2007) Understanding the controversy about hormonal replacement therapy: insights from estrogen effects on experimental and clinical atherosclerosis. Arch Mal Coeur Vaiss 100:554–562

    PubMed  Google Scholar 

  11. Stevenson J (2009) HRT and cardiovascular disease. Best Pract Res Clin Obstet Gynaecol 23(1):109–120

    Article  PubMed  Google Scholar 

  12. Gokkusu C, Tata G, Ademoğlu E, Tamer S (2010) The benefits of hormone replacement therapy on plasma and platelet antioxidant status and fatty acid composition in healthy postmenopausal women. Platelets 21(6):439–444

    Article  PubMed  CAS  Google Scholar 

  13. Signorelli SS, Sciacchitano S, Di Pino L, Costa MP, Pennisi G, Caschetto S (2001) Effects of long-term hormone replacement therapy on arterial wall thickness, lipids and lipoproteins, fibrinogen and antithrombin III. Gynecol Endocrinol 15(5):367–372

    PubMed  CAS  Google Scholar 

  14. Schindler TH, Campisi R, Dorsey D (2009) Effect of hormone replacement therapy on vasomotor function of the coronary microcirculation in post-menopausal women with medically treated cardiovascular risk factors. Eur Heart J 30(8):978–986

    Article  PubMed  CAS  Google Scholar 

  15. Iwamoto S, Kawasaki T, Kambayashi J, Ariyoshi H, Shinoki N, Sakon M, Ikeda Y, Monden M (1997) The release mechanism of platelet-activating factor during shear-stress induced platelet aggregation. Biochem Biophys Res Commun 239(1):101–105

    Article  PubMed  CAS  Google Scholar 

  16. Cramer EM, Norol F, Guichard J, Breton-Gorius J, Vainchenker W, Massé JM, Debili N (1997) Ultrastructure of platelet formation by human megakaryocytes cultured with the Mpl ligand. Blood 89:2336–2346

    PubMed  CAS  Google Scholar 

  17. Nieuwland R, Berckmans RJ, Rotteveel-Eijkman RC, Maquelin KN, Roozendaal KJ, Jansen PG, ten Have K, Eijsman L, Hack CE, Sturk A (1997) Cell-derived microparticles generated in patients during cardiopulmonary bypass are highly procoagulant. Circulation 96:3534–3541

    PubMed  CAS  Google Scholar 

  18. Sims PJ, Faioni EM, Wiedmer T, Shattil SJ (1988) Complement proteins C5b-9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity. J Biol Chem 263:18205–18212

    PubMed  CAS  Google Scholar 

  19. Biró E, Sturk-Maquelin KN, Vogel GM, Meuleman DG, Smit MJ, Hack CE, Sturk A, Nieuwland R (2003) Human cell-derived microparticles promote thrombus formation in vivo in a tissue factor-dependent manner. J Thromb Haemost 1(12):2561–2568

    Article  PubMed  Google Scholar 

  20. Sinauridze EI, Kireev DA, Popenko NY, Pichugin AV, Panteleev MA, Krymskaya OV, Ataullakhanov FI (2007) Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb Haemost 97(3):425–434

    PubMed  CAS  Google Scholar 

  21. Gemmell CH, Sefton MV, Yeo EL (1993) Platelet-derived microparticle formation involves glycoprotein IIb–IIIa. Inhibition by RGDS and a Glanzmann’s thrombasthenia defect. J Biol Chem atherothrombotic disease. J Biol Chem 268(20):14586–14589

    PubMed  CAS  Google Scholar 

  22. Sims PJ, Wiedmer T, Esmon CT, Weiss HJ, Shattil SJ (1988) Assembly of the platelet prothrombinase complex is linked to vesiculation of the platelet plasma membrane. Studies in Scott syndrome: an isolated defect in platelet procoagulant activity. J Biol Chem 264(29):17049–17057

    Google Scholar 

  23. Kuriyama N, Nagakane Y, Hosomi A, Ohara T, Kasai T, Harada S, Takeda K, Yamada K, Ozasa K, Tokuda T, Watanabe Y, Mizuno T, Nakagawa M (2010) Evaluation of factors associated with elevated levels of platelet-derived microparticles in the acute phase of cerebral infarction. Clin Appl Thromb Hemost 16(1):26–32

    Article  PubMed  CAS  Google Scholar 

  24. Li X, Cong H (2009) Platelet-derived microparticles and the potential of glycoprotein IIb/IIIa antagonists in treating acute coronary syndrome. Tex Heart Inst J 36(2):134–139

    PubMed  Google Scholar 

  25. Joop K, Berckmans RJ, Nieuwland R, Berkhout J, Romijn FP, Hack CE, Sturk A (2001) Microparticles from patients with multiple organ dysfunction syndrome and sepsis support coagulation through multiple mechanisms. Thromb Haemost 85(5):810–820

    PubMed  CAS  Google Scholar 

  26. Kelton JG (2002) Heparin-induced thrombocytopenia: an overview. Blood Rev 16(1):77–80

    Article  PubMed  CAS  Google Scholar 

  27. Myers DD, Hawley AE, Farris DM, Wrobleski SK, Thanaporn P, Schaub RG, Wagner DD, Kumar A, Wakefield TW (2003) P-selectin and leukocyte microparticles are associated with venous thrombogenesis. J Vasc Surg 38(5):1075–1089

    Article  PubMed  Google Scholar 

  28. Jimenez JJ, Jy W, Mauro LM, Soderland C, Horstman LL, Ahn YS (2003) Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis. Thromb Res 109(4):175–180

    Article  PubMed  CAS  Google Scholar 

  29. Abid Hussein MN, Meesters EW, Osmanovic N, Romijn FP, Nieuwland R, Sturk A (2003) Antigenic characterization of endothelial cell-derived microparticles and their detection ex vivo. J Thromb Haemost 1(11):2434–2443

    Article  PubMed  CAS  Google Scholar 

  30. Berckmans RJ, Nieuwland R, Böing AN, Romijn FP, Hack CE, Sturk A (2001) Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation. Thromb Haemost 83:639–646

    Google Scholar 

  31. Bal L, Ederhy S, Di Angelantonio E, Toti F, Zobairi F, Dufaitre G, Meuleman C, Mallat Z, Boccara F, Tedgui A, Freyssinet JM, Cohen A (2010) Factors influencing the level of circulating procoagulant microparticles in acute pulmonary embolism. Arch Cardiovasc Dis 103(6–7):394–403

    Article  PubMed  Google Scholar 

  32. Rectenwald JE, Myers DD Jr, Hawley AE, Longo C, Henke PK, Guire KE, Schmaier AH, Wakefield TW (2005) D-dimer, P-selectin, and microparticles: novel markers to predict deep venous thrombosis. A pilot study. Thromb Haemost 94(6):1312–1317

    PubMed  CAS  Google Scholar 

  33. Ramacciotti E, Hawley AE, Farris DM, Ballard NE, Wrobleski SK, Myers DD Jr, Henke PK, Wakefield TW (2009) Leukocyte- and platelet-derived microparticles correlate with thrombus weight and tissue factor activity in an experimental mouse model of venous thrombosis. Thromb Haemost 101(4):748–754

    PubMed  CAS  Google Scholar 

  34. Rank A, Nieuwland R, Crispin A, Gr Tzner S, Iberer M, Toth B, Pihusch R (2011) Clearance of platelet microparticles in vivo. Platelets 22(2):111–116

    Article  PubMed  CAS  Google Scholar 

  35. Warren BA, Vales O (1972) The release of vesicles from platelets following adhesion to vessel walls in vitro. Br J Exp Pathol 53:206–215

    PubMed  CAS  Google Scholar 

  36. Miyazaki Y, Nomura S, Miyake T, Kagawa H, Kitada C, Taniguchi H, Komiyama Y, Fujimura Y, Ikeda Y, Fukuhara S (1996) High shear stress can initiate both platelet aggregation and shedding of procoagulant containing microparticles. Blood 88:3456–3464

    PubMed  CAS  Google Scholar 

  37. Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ (1999) Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94:3791–3799

    PubMed  CAS  Google Scholar 

  38. van der Zee PM, Biró E, Ko Y, de Winter RJ, Hack CE, Sturk A, Nieuwland R (2006) P-selectin- and CD63-exposing platelet microparticles reflect platelet activation in peripheral arterial disease and myocardial infarction. Clin Chem 52(4):657–664

    Article  PubMed  Google Scholar 

  39. Tan KT, Tayebjee MH, Lynd C, Blann AD, Lip GY (2005) Platelet microparticles and soluble P selectin in peripheral artery disease: relationship to extent of disease and platelet activation markers. Ann Med 37(1):61–66

    Article  PubMed  CAS  Google Scholar 

  40. Travlos GS (2006) Normal structure, function, and histology of the bone marrow. Toxicol Pathol 34:548–565

    Article  PubMed  Google Scholar 

  41. Flaumenhaft R, Dilks JR, Richardson J, Alden E, Patel-Hett SR, Battinelli E, Klement GL, Sola-Visner M, Italiano JE Jr (2009) Megakaryocyte-derived microparticles: direct visualization and distinction from platelet-derived microparticles. Blood 113:1112–1121

    Article  PubMed  CAS  Google Scholar 

  42. Rank A, Nieuwland R, Delker R, Köhler A, Toth B, Pihusch V, Wilkowski R, Pihusch R (2010) Cellular origin of platelet-derived microparticles in vivo. Thromb Res 126(4):255–259

    Article  Google Scholar 

  43. Tarantino MD, Kunicki TJ, Nugent DJ (1994) The estrogen receptor is present in human megakaryocytes. Ann N Y Acad Sci 714:293–296

    Article  PubMed  CAS  Google Scholar 

  44. Nagata Y, Yoshikawa J, Hashimoto A, Yamamoto M, Payne AH, Todokoro K (2003) Proplatelet formation of megakaryocytes is triggered by autocrine-synthesized estradiol. Genes Dev 17(23):2864–2869

    Article  PubMed  CAS  Google Scholar 

  45. Stevens RF, Alexander MK (1977) A sex difference in the platelet count. Br J Haematol 37(2):295–300

    Article  PubMed  CAS  Google Scholar 

  46. Toth B, Nikolajek K, Rank A, Nieuwland R, Lohse P, Pihusch V, Friese K, Thaler CJ (2007) Gender-specific and menstrual cycle dependent differences in circulating microparticles. Platelets 18(7):515–521

    Article  PubMed  CAS  Google Scholar 

  47. Corada M, Liao F, Lindgren M, Lampugnani MG, Breviario F, Frank R, Muller WA, Hicklin DJ, Bohlen P, Dejana E (2001) Monoclonal antibodies directed to different regions of vascular endothelial cadherin extracellular domain affect adhesion and clustering of the protein and modulate endothelial permeability. Blood 97(6):1679–1684

    Article  PubMed  CAS  Google Scholar 

  48. Simak J, Holada K, Risitano AM, Zivny JH, Young NS, Vostal JG (2004) Elevated circulating endothelial membrane microparticles in paroxysmal nocturnal haemoglobinuria. Brit J Haematol 125(6):804–813

    Article  Google Scholar 

  49. Koga H, Sugiyama S, Kugiyama K, Watanabe K, Fukushima H, Tanaka T, Sakamoto T, Yoshimura M, Jinnouchi H, Ogawa H (2005) Elevated levels of VE-cadherin-positive endothelial microparticles in patients with type 2 diabetes mellitus and coronary artery disease. J Am Coll Cardiol 45:1622–1630

    Article  PubMed  CAS  Google Scholar 

  50. Wakefield TW, Henke PK (2005) The role of inflammation in early and late venous thrombosis: are there clinical implications? Semin Vasc Surg 18(3):118–129

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Marianne Vogel and Andrea Peichl for technical assistance as well as Maren vondemBusche for help in acquisition of the study population. We are very grateful to Kathleen Hiller for her careful review and editing of the manuscript as a native speaker from Iowa, USA. “FöFoLe” of Ludwig-Maximilian-University funded Bettina Toth and her study team for her research investigation “Plasma levels of circulating microparticles in postmenopausal women under Hormone replacement therapy”. Fund amounts 7.500 Euro for this project.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Rank.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rank, A., Nieuwland, R., Nikolajek, K. et al. Hormone replacement therapy leads to increased plasma levels of platelet derived microparticles in postmenopausal women. Arch Gynecol Obstet 285, 1035–1041 (2012). https://doi.org/10.1007/s00404-011-2098-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-011-2098-0

Keywords

Navigation