Skip to main content

Advertisement

Log in

Recombinant human bone morphogenetic protein-2 versus autogenous iliac crest bone graft for lumbar fusion: a meta-analysis of ten randomized controlled trials

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Background

Recombinant human bone morphogenetic protein-2 (rhBMP-2) as a substitute for iliac crest bone graft (ICBG) has been increasingly widely used in lumbar fusion. It has been proven non-inferior in fusion success and clinical outcomes when compared with ICBG. However, increasingly, some potentially uncommon and serious complications associated with the use of rhBMP-2 have been of great concern to surgeons. The purpose of this study was to determine whether rhBMP-2 could be considered an effective and, more importantly, a relatively safe substitute for ICBG in lumbar fusion.

Methods

Randomized controlled trials that compared rhBMP-2 with ICBG for lumbar fusion were identified by computer and manual searching. The risk of bias and clinical relevance of the included studies were assessed. Publication bias was explored using funnel plot and statistical tests (Egger’s test and Begg’s test). Meta-analyses were performed using the Cochrane systematic review methods.

Results

Ten randomized controlled trials (1,342 patients) met the inclusion criteria. Compared with ICBG, the use of rhBMP-2 significantly decreased the risk of fusion failure at all time intervals (6 months: p < 0.0001, RR = 0.55, 95 % CI = 0.42–0.72; 12 months: p = 0.0003, RR = 0.53, 95 % CI = 0.37–0.75; 24 months: p < 0.00001, RR = 0.31, 95 % CI = 0.21–0.46) and the rate of reoperation (p = 0.0001, RR = 0.52, 95 % CI = 0.37–0.72). There was no statistical difference in clinical improvement on the Oswestry Disability Index, although a favorable trend in the rhBMP-2 group was found (p = 0.12, RR = 0.73, 95 % CI = 0.49–1.08). Subgroup analyses stratified by the type of surgical procedure yielded similar results. Owing to the different data formats, meta-analysis on adverse events was not performed.

Conclusion

RhBMP-2 was superior to the ICBG for achieving fusion success and avoiding reoperation. However, evidence from the Food and Drug Administration document and subsequent independent studies has demonstrated that original, industry-sponsored trials underestimated rhBMP-2-related adverse events. There are still security risks in the use of rhBMP-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kaufman HH, Jones E (1989) The principles of bony spinal fusion. Neurosurgery 24(2):264–270. doi:10.1097/00006123-198902000-00018

    Article  PubMed  CAS  Google Scholar 

  2. Fujiya M, Saita M, Kaneda K, Abumi K (1990) Clinical study on stability of combined distraction and compression rod instrumentation with posterolateral fusion for unstable degenerative spondylolisthesis. Spine 15(11):1216–1222. doi:10.1097/00007632-199011010-00023

    Article  PubMed  CAS  Google Scholar 

  3. Blumenthal SL, Baker J, Dossett A, Selby DK (1988) The role of anterior lumbar fusion for internal disc disruption. Spine 13(5):566–569. doi:10.1097/00007632-198805000-00023

    Article  PubMed  CAS  Google Scholar 

  4. Arrington ED, Smith WJ, Chambers HG, Bucknell AL, Davino NA (1996) Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res 329:300–309. doi:10.1097/00003086-199608000-00037

    Article  PubMed  Google Scholar 

  5. Younger EM, Chapman MW (1989) Morbidity at bone graft donor sites. J Orthop Trauma 3(3):192–195. doi:10.1097/00005131-198909000-00002

    Article  PubMed  CAS  Google Scholar 

  6. Banwart JC, Asher MA, Hassanein RS (1995) Iliac crest bone graft harvest donor site morbidity. A statistical evaluation. Spine 20(9):1055–1060. doi:10.1097/00007632-199505000-00012

    Article  PubMed  CAS  Google Scholar 

  7. Vaccaro AR, Chiba K, Heller JG, Patel T, Thalgott JS, Truumees E, Fischgrund JS, Craig MR, Berta SC, Wang JC (2002) Bone grafting alternatives in spinal surgery. Spine J 2(3):206–215. doi:10.1016/S1529-9430(02)00180-8

    Article  PubMed  Google Scholar 

  8. Boden SD, Schimandle JH (1995) Biologic enhancement of spinal fusion. Spine 20(24 Suppl):113S–123S. doi:10.1097/00007632-199512151-00008

    Article  PubMed  CAS  Google Scholar 

  9. Weiner BK, Walker M (2003) Efficacy of autologous growth factors in lumbar intertransverse fusions. Spine 28(17):1968–1970. doi:10.1097/01.BRS.0000083141.02027.48 (discussion 1971)

    Article  PubMed  Google Scholar 

  10. Whang PG, Wang JC (2003) Bone graft substitutes for spinal fusion. Spine J 3(2):155–165. doi:10.1016/S1529-9430(02)00539-9

    Article  PubMed  Google Scholar 

  11. Urist MR (1965) Bone: formation by autoinduction. Science 150(3698):893–899. doi:10.1126/science.150.3698.893

    Article  PubMed  CAS  Google Scholar 

  12. Urist MR, Strates BS (1971) Bone morphogenetic protein. J Dent Res 50(6):1392–1406. doi:10.1177/00220345710500060601

    Article  PubMed  CAS  Google Scholar 

  13. Sampath TK, Coughlin JE, Whetstone RM, Banach D, Corbett C, Ridge RJ, Ozkaynak E, Oppermann H, Rueger DC (1990) Bovine osteogenic protein is composed of dimers of OP-1 and BMP-2A, two members of the transforming growth factor-beta superfamily. J Biol Chem 265(22):13198–13205

    PubMed  CAS  Google Scholar 

  14. Boden SD, Kang J, Sandhu H, Heller JG (2002) Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans: a prospective, randomized clinical pilot trial: 2002 Volvo Award in clinical studies. Spine 27(23):2662–2673. doi:10.1097/00007632-200212010-00005

    Article  PubMed  Google Scholar 

  15. Dimar JR, Glassman SD, Burkus KJ, Carreon LY (2006) Clinical outcomes and fusion success at 2 years of single-level instrumented posterolateral fusions with recombinant human bone morphogenetic protein-2/compression resistant matrix versus iliac crest bone graft. Spine 31(22):2534–2539. doi:10.1097/01.brs.0000240715.78657.81 (discussion 2540)

    Article  PubMed  Google Scholar 

  16. Burkus JK, Gornet MF, Dickman CA, Zdeblick TA (2002) Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord Tech 15(5):337–349. doi:10.1097/00024720-200210000-00001

    Article  PubMed  Google Scholar 

  17. Burkus JK, Sandhu HS, Gornet MF, Longley MC (2005) Use of rhBMP-2 in combination with structural cortical allografts: clinical and radiographic outcomes in anterior lumbar spinal surgery. J Bone Joint Surg Am 87(6):1205–1212. doi:10.2106/JBJS.D.02532

    Article  PubMed  Google Scholar 

  18. Boden SD, Zdeblick TA, Sandhu HS, Heim SE (2000) The use of rhBMP-2 in interbody fusion cages. Definitive evidence of osteoinduction in humans: a preliminary report. Spine 25(3):376–381. doi:10.1097/00007632-200002010-00020

    Article  PubMed  CAS  Google Scholar 

  19. Fairbank JC, Couper J, Davies JB, O’Brien JP (1980) The Oswestry Low Back Pain Disability Questionnaire. Physiotherapy 66(8):271–273

    PubMed  CAS  Google Scholar 

  20. Furlan AD, Pennick V, Bombardier C, van Tulder M (2009) 2009 updated method guidelines for systematic reviews in the Cochrane Back Review Group. Spine 34(18):1929–1941. doi:10.1097/BRS.0b013e3181b1c99f

    Article  PubMed  Google Scholar 

  21. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188. doi:10.1016/0197-2456(86)90046-2

    Article  PubMed  CAS  Google Scholar 

  22. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560. doi:10.1136/bmj.327.7414.557

    Article  PubMed  Google Scholar 

  23. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634. doi:10.1136/bmj.315.7109.629

    Article  PubMed  CAS  Google Scholar 

  24. Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50(4):1088–1101. doi:10.2307/2533446

    Article  PubMed  CAS  Google Scholar 

  25. Egger M, Smith GD (1998) Bias in location and selection of studies. BMJ 316(7124):61–66. doi:10.1136/bmj.316.7124.61

    Article  PubMed  CAS  Google Scholar 

  26. Duval S, Tweedie R (2000) Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56(2):455–463. doi:10.1111/j.0006-341X.2000.00455.x

    Article  PubMed  CAS  Google Scholar 

  27. Altman DG, Bland JM (2003) Interaction revisited: the difference between two estimates. BMJ 326(7382):219. doi:10.1136/bmj.326.7382.219

    Article  PubMed  Google Scholar 

  28. Burkus JK, Dorchak JD, Sanders DL (2003) Radiographic assessment of interbody fusion using recombinant human bone morphogenetic protein type 2. Spine 28(4):372–377. doi:10.1097/01.BRS.0000048469.45035.B9

    PubMed  Google Scholar 

  29. Burkus JK, Transfeldt EE, Kitchel SH, Watkins RG, Balderston RA (2002) Clinical and radiographic outcomes of anterior lumbar interbody fusion using recombinant human bone morphogenetic protein-2. Spine 27(21):2396–2408. doi:10.1097/00007632-200211010-00015

    Article  PubMed  Google Scholar 

  30. Dimar JR 2nd, Glassman SD, Burkus JK, Pryor PW, Hardacker JW, Carreon LY (2009) Two-year fusion and clinical outcomes in 224 patients treated with a single-level instrumented posterolateral fusion with iliac crest bone graft. Spine J 9(11):880–885. doi:10.1016/j.spinee.2009.03.013

    Article  PubMed  Google Scholar 

  31. Dimar JR 2nd, Glassman SD, Burkus JK, Pryor PW, Hardacker JW, Carreon LY (2009) Clinical and radiographic analysis of an optimized rhBMP-2 formulation as an autograft replacement in posterolateral lumbar spine arthrodesis. Journal Bone Joint Surg Am 91(6):1377–1386. doi:10.2106/JBJS.H.00200

    Article  Google Scholar 

  32. Glassman SD, Dimar JR, Carreon LY, Campbell MJ, Puno RM, Johnson JR (2005) Initial fusion rates with recombinant human bone morphogenetic protein-2/compression resistant matrix and a hydroxyapatite and tricalcium phosphate/collagen carrier in posterolateral spinal fusion. Spine 30(15):1694–1698. doi:10.1097/01.brs.0000172157.39513.80

    Article  PubMed  Google Scholar 

  33. Dawson E, Bae HW, Burkus JK, Stambough JL, Glassman SD (2009) Recombinant human bone morphogenetic protein-2 on an absorbable collagen sponge with an osteoconductive bulking agent in posterolateral arthrodesis with instrumentation. A prospective randomized trial. J Bone Joint Surg Am 91(7):1604–1613. doi:10.2106/JBJS.G.01157

    Article  PubMed  Google Scholar 

  34. Glassman SD, Carreon LY, Djurasovic M, Campbell MJ, Puno RM, Johnson JR, Dimar JR (2008) RhBMP-2 versus iliac crest bone graft for lumbar spine fusion: a randomized, controlled trial in patients over 60 years of age. Spine 33(26):2843–2849. doi:10.1097/BRS.0b013e318190705d

    Article  PubMed  Google Scholar 

  35. Haid RW Jr, Branch CL Jr, Alexander JT, Burkus JK (2004) Posterior lumbar interbody fusion using recombinant human bone morphogenetic protein type 2 with cylindrical interbody cages. Spine J 4(5):527–538. doi:10.1016/j.spinee.2004.03.025 (discussion 538–529)

    Article  PubMed  Google Scholar 

  36. Meyerding HW (1956) Spondylolisthesis; surgical fusion of lumbosacral portion of spinal column and interarticular facets: use of autogenous bone grafts for relief of disabling backache. Journal Int Coll Surg 26(5 Part 1):566–591

    CAS  Google Scholar 

  37. McKay B, Sandhu HS (2002) Use of recombinant human bone morphogenetic protein-2 in spinal fusion applications. Spine 27(16 Suppl 1):S66–S85. doi:10.1097/00007632-200208151-00014

    Article  PubMed  Google Scholar 

  38. Boden SD, Martin GJ Jr, Morone MA, Ugbo JL, Moskovitz PA (1999) Posterolateral lumbar intertransverse process spine arthrodesis with recombinant human bone morphogenetic protein 2/hydroxyapatite-tricalcium phosphate after laminectomy in the nonhuman primate. Spine 24(12):1179–1185. doi:10.1097/00007632-199906150-00002

    Article  PubMed  CAS  Google Scholar 

  39. Martin GJ Jr, Boden SD, Marone MA, Moskovitz PA (1999) Posterolateral intertransverse process spinal arthrodesis with rhBMP-2 in a nonhuman primate: important lessons learned regarding dose, carrier, and safety. J Spinal Disord 12(3):179–186. doi:10.1097/00002517-199906000-00001

    PubMed  Google Scholar 

  40. Boden SD, Schimandle JH, Hutton WC (1995) 1995 Volvo Award in basic sciences. The use of an osteoinductive growth factor for lumbar spinal fusion. Part II: study of dose, carrier, and species. Spine 20(24):2633–2644. doi:10.1097/00007632-199512150-00004

    Article  PubMed  CAS  Google Scholar 

  41. Wozney JM (1992) The bone morphogenetic protein family and osteogenesis. Mol Reprod Dev 32(2):160–167. doi:10.1002/mrd.1080320212

    Article  PubMed  CAS  Google Scholar 

  42. Yoon ST, Park JS, Kim KS, Li J, Attallah-Wasif ES, Hutton WC, Boden SD (2004) ISSLS prize winner: lMP-1 upregulates intervertebral disc cell production of proteoglycans and BMPs in vitro and in vivo. Spine 29(23):2603–2611. doi:10.1097/01.brs.0000146103.94600.85

    Article  PubMed  Google Scholar 

  43. Akamaru T, Suh D, Boden SD, Kim HS, Minamide A, Louis-Ugbo J (2003) Simple carrier matrix modifications can enhance delivery of recombinant human bone morphogenetic protein-2 for posterolateral spine fusion. Spine 28(5):429–434. doi:10.1097/01.BRS.0000048644.91330.14

    PubMed  Google Scholar 

  44. Suh DY, Boden SD, Louis-Ugbo J, Mayr M, Murakami H, Kim HS, Minamide A, Hutton WC (2002) Delivery of recombinant human bone morphogenetic protein-2 using a compression-resistant matrix in posterolateral spine fusion in the rabbit and in the non-human primate. Spine 27(4):353–360. doi:10.1097/00007632-200202150-00006

    Article  PubMed  Google Scholar 

  45. Barnes B, Boden SD, Louis-Ugbo J, Tomak PR, Park JS, Park MS, Minamide A (2005) Lower dose of rhBMP-2 achieves spine fusion when combined with an osteoconductive bulking agent in non-human primates. Spine 30(10):1127–1133. doi:10.1097/01.brs.0000162623.48058.8c

    Article  PubMed  Google Scholar 

  46. Benglis D, Wang MY, Levi AD (2008) A comprehensive review of the safety profile of bone morphogenetic protein in spine surgery. Neurosurgery 62(5 Suppl 2):ONS423–ONS431. doi:10.1227/01.neu.0000326030.24220.d8 (discussion ONS431)

    Article  PubMed  Google Scholar 

  47. Wong DA, Kumar A, Jatana S, Ghiselli G, Wong K (2008) Neurologic impairment from ectopic bone in the lumbar canal: a potential complication of off-label PLIF/TLIF use of bone morphogenetic protein-2 (BMP-2). Spine J 8(6):1011–1018. doi:10.1016/j.spinee.2007.06.014

    Article  PubMed  Google Scholar 

  48. Chen NF, Smith ZA, Stiner E, Armin S, Sheikh H, Khoo LT (2010) Symptomatic ectopic bone formation after off-label use of recombinant human bone morphogenetic protein-2 in transforaminal lumbar interbody fusion. J Neurosurg Spine 12(1):40–46. doi:10.3171/2009.4.SPINE0876

    Article  PubMed  Google Scholar 

  49. Kanatani M, Sugimoto T, Kaji H, Kobayashi T, Nishiyama K, Fukase M, Kumegawa M, Chihara K (1995) Stimulatory effect of bone morphogenetic protein-2 on osteoclast-like cell formation and bone-resorbing activity. J Bone Miner res 10(11):1681–1690. doi:10.1002/jbmr.5650101110

    Article  PubMed  CAS  Google Scholar 

  50. Burkus JK, Gornet MF, Schuler TC, Kleeman TJ, Zdeblick TA (2009) Six-year outcomes of anterior lumbar interbody arthrodesis with use of interbody fusion cages and recombinant human bone morphogenetic protein-2. J Bone Joint Surg Am 91(5):1181–1189. doi:10.2106/JBJS.G.01485

    Article  PubMed  Google Scholar 

  51. Vaidya R, Weir R, Sethi A, Meisterling S, Hakeos W, Wybo CD (2007) Interbody fusion with allograft and rhBMP-2 leads to consistent fusion but early subsidence. J Bone Joint Surg Br 89(3):342–345. doi:10.1302/0301-620X.89B3.18270

    Article  PubMed  CAS  Google Scholar 

  52. Lu S, Xu YQ, Chang S, Zhang YZ, Shi JH, Ding ZH, Li ZH, Zhong SZ (2009) Clinical anatomy study of autonomic nerve with respective to the anterior approach lumbar surgery. Surg Radiol Anat 31(6):425–430. doi:10.1007/s00276-009-0461-7

    Article  PubMed  Google Scholar 

  53. United States Food and Drug Administration, Department of Health and Human Services, C-enter for Devices and Radiological Health. (2011). InFUSE bone Graft/LT-CAGE? Lumbar tapered fusion Devices—P000058. Available at: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cftopic/pma/pma.cfm?num5P000058. Accessed 20 January 2011

  54. Smoljanovic T, Siric F, Bojanic I (2010) Six-year outcomes of anterior lumbar interbody arthrodesis with use of interbody fusion cages and recombinant human bone morphogenetic protein-2. J Bone Joint Surg Am 92(15):2614–2615 (author reply 2615–2616)

    PubMed  Google Scholar 

  55. Carragee EJ, Mitsunaga KA, Hurwitz EL, Scuderi GJ (2011) Retrograde ejaculation after anterior lumbar interbody fusion using rhBMP-2: a cohort controlled study. Spine J 11(6):511–516. doi:10.1016/j.spinee.2011.02.013

    Article  PubMed  Google Scholar 

  56. Food and Drug Adminstration. (2011). Food and Drug Administration Executive Summary for P050036 Medtronic’s AMPLIFY_ rhBMP-2 matrix orthopaedic and rehabilitation devices advisory panel. Available at: http://www.fda.gov/downloads/AdvisoryCommittees/Committees MeetingMaterials/MedicalDevices/MedicalDevicesAdvisoryCommittee/OrthopaedicandRehabilitati-onDevicesPanel/UCM220079.pdf. Accessed July 9, 2011

  57. Luhmann SJ, Bridwell KH, Cheng I, Imamura T, Lenke LG, Schootman M (2005) Use of bone morphogenetic protein-2 for adult spinal deformity. Spine 30(17 Suppl):S110–S117. doi:10.1097/01.brs.0000175184.27407.6a

    Article  PubMed  Google Scholar 

  58. Maeda T, Buchowski JM, Kim YJ, Mishiro T, Bridwell KH (2009) Long adult spinal deformity fusion to the sacrum using rhBMP-2 versus autogenous iliac crest bone graft. Spine 34(20):2205–2212. doi:10.1097/BRS.0b013e3181b0485c

    Article  PubMed  Google Scholar 

  59. Mulconrey DS, Bridwell KH, Flynn J, Cronen GA, Rose PS (2008) Bone morphogenetic protein (RhBMP-2) as a substitute for iliac crest bone graft in multilevel adult spinal deformity surgery: minimum two-year evaluation of fusion. Spine 33(20):2153–2159. doi:10.1097/BRS.0b013e31817bd91e

    Article  PubMed  Google Scholar 

  60. Glassman SD, Howard J, Dimar J, Sweet A, Wilson G, Carreon L (2011) Complications with recombinant human bone morphogenic protein-2 in posterolateral spine fusion: a consecutive series of 1037 cases. Spine 36(22):1849–1854. doi:10.1097/BRS.0b013e3181d133d0

    Article  PubMed  Google Scholar 

  61. Carragee EJ, Hurwitz EL, Weiner BK (2011) A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J 11(6):471–491. doi:10.1016/j.spinee.2011.04.023

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors did not receive grants or outside funding in support of their research or preparation of the manuscript. We thank all the reviewers for their helpful suggestions on the quality improvement of our paper.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Ba, G., Shen, T. et al. Recombinant human bone morphogenetic protein-2 versus autogenous iliac crest bone graft for lumbar fusion: a meta-analysis of ten randomized controlled trials. Arch Orthop Trauma Surg 132, 1725–1740 (2012). https://doi.org/10.1007/s00402-012-1607-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-012-1607-3

Keywords

Navigation