Skip to main content

Advertisement

Log in

Calcium phosphate bone cement: a possible alternative to autologous bone graft. A radiological and biomechanical comparison in rat tibial bone

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Background

Donor site morbidity is a problem after autologous bone transplantation. An injectable CaP bone cement indicates properties similar to bone.

Materials and methods

Double osteotomies on rat tibias were performed. The intercalated segments were avascular (10), vascular (10), or avascular with Norian SRS® CaP bone cement replacing cancellous bone (10). Controls were non-operated contralateral tibias (15). All osteotomies were stabilised with an intra-medullary nail. After 8 weeks, all rats were killed. The harvested tibias were compared using X-ray, DEXA scanning, microCT scans and a biomechanical torsional test.

Results

No difference in healing processes or biomechanical results has been found between the avascular bone graft, vascular bone graft and CaP bone cement groups.

Conclusion

The injectable CaP bone cement confirms its similarities to bone, implying that it can be used as an adjunct to secure bone fragments and as a possible alternative to autologous bone transplantation in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abramo A, Tagil M, Geijer M et al (2008) Osteotomy of dorsally displaced malunited fractures of the distal radius: no loss of radiographic correction during healing with a minimally invasive fixation technique and an injectable bone substitute. Acta Orthop 79:262–268

    Article  PubMed  Google Scholar 

  2. Acarturk O, Lehmicke M, Aberman H et al (2008) Bone healing response to an injectable calcium phosphate cement with enhanced radiopacity. J Biomed Mater Res B Appl Biomater 86:56–62

    PubMed  Google Scholar 

  3. Arrington ED, Smith WJ, Chambers HG et al (1996) Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res 329:300–309

    Article  PubMed  Google Scholar 

  4. Baron R, Tross R, Vignery A (1984) Evidence of sequential remodeling in rat trabecular bone: morphology, dynamic histomorphometry, and changes during skeletal maturation. Anat Rec 208:137–145

    Article  PubMed  CAS  Google Scholar 

  5. Bell SN, Dooley BJ, O’Brien BM et al (1985) Cortical bone grafts with muscle pedicles. An experimental study of survival and ability to bridge a bone gap. J Bone Joint Surg Br 67:804–808

    PubMed  CAS  Google Scholar 

  6. Carson JS, Bostrom MP (2007) Synthetic bone scaffolds and fracture repair. Injury 38(Suppl 1):S33–S37

    Article  PubMed  Google Scholar 

  7. Cattermole HC, Cunningham JL (1995) Influence of metallic implants adjacent to the measurement site on DEXA measurements: a phantom study. Phys Med Biol 40:1885–1896

    Article  PubMed  CAS  Google Scholar 

  8. Clokie CM, Moghadam H, Jackson MT et al (2002) Closure of critical sized defects with allogenic and alloplastic bone substitutes. J Craniofac Surg 13:111–121

    Article  PubMed  Google Scholar 

  9. Cohen MS, Whitman K (1997) Calcium phosphate bone cement—the Norian skeletal repair system in orthopedic surgery. AORN J 65:958–962

    Article  PubMed  CAS  Google Scholar 

  10. Constantz BR, Ison IC, Fulmer MT et al (1995) Skeletal repair by in situ formation of the mineral phase of bone. Science 267:1796–1799

    Article  PubMed  CAS  Google Scholar 

  11. Davis PK, Mazur JM, Coleman GN (1982) A torsional strength comparison of vascularized and nonvascularized bone grafts. J Biomech 15:875–880

    Article  PubMed  CAS  Google Scholar 

  12. Frankenburg EP, Goldstein SA, Bauer TW et al (1998) Biomechanical and histological evaluation of a calcium phosphate cement. J Bone Joint Surg Am 80:1112–1124

    PubMed  CAS  Google Scholar 

  13. Herron S, Thordarson DB, Winet H et al (2003) Ingrowth of bone into absorbable bone cement: an in vivo microscopic evaluation. Am J Orthop 32:581–584

    PubMed  Google Scholar 

  14. Horn J, Steen H, Reikeras O (2008) Role of the fibula in lower leg fractures: an in vivo investigation in rats. J Orthop Res 26:1027–1031

    Article  PubMed  Google Scholar 

  15. Jowsey J (1966) Studies of Haversian systems in man and some animals. J Anat 100:857–864

    PubMed  CAS  Google Scholar 

  16. Kanis JA, Devogelaer JP, Gennari C (1996) Practical guide for the use of bone mineral measurements in the assessment of treatment of osteoporosis: a position paper of the European foundation for osteoporosis and bone disease. The Scientific Advisory Board and the Board of National Societies. Osteoporos Int 6:256–261

    Article  PubMed  CAS  Google Scholar 

  17. Kanis JA, Melton LJ III, Christiansen C et al (1994) The diagnosis of osteoporosis. J Bone Miner Res 9:1137–1141

    Article  PubMed  CAS  Google Scholar 

  18. Kopylov P, Adalberth K, Jonsson K et al (2002) Norian SRS versus functional treatment in redisplaced distal radial fractures: a randomized study in 20 patients. J Hand Surg [Br] 27:538–541

    CAS  Google Scholar 

  19. Kopylov P, Jonsson K, Thorngren KG et al (1996) Injectable calcium phosphate in the treatment of distal radial fractures. J Hand Surg [Br] 21:768–771

    CAS  Google Scholar 

  20. Kopylov P, Runnqvist K, Jonsson K et al (1999) Norian SRS versus external fixation in redisplaced distal radial fractures. A randomized study in 40 patients. Acta Orthop Scand 70:1–5

    Article  PubMed  CAS  Google Scholar 

  21. Lozano-Calderon S, Moore M, Liebman M et al (2007) Distal radius osteotomy in the elderly patient using angular stable implants and Norian bone cement. J Hand Surg [Am] 32:976–983

    Article  Google Scholar 

  22. Malizos KN, Papatheodorou LK (2005) The healing potential of the periosteum molecular aspects. Injury 36(Suppl 3):S13–S19

    Article  PubMed  Google Scholar 

  23. Nather A, Balasubramaniam P, Bose K (1990) Healing of non-vascularised diaphyseal bone transplants. An experimental study. J Bone Joint Surg Br 72:830–834

    PubMed  CAS  Google Scholar 

  24. Nather A, Goh JC, Lee JJ (1990) Biomechanical strength of non-vascularised and vascularised diaphyseal bone transplants. An experimental study. J Bone Joint Surg Br 72:1031–1035

    PubMed  CAS  Google Scholar 

  25. Reikeras O, Shegarfi H, Naper C et al (2008) Impact of MHC mismatch and freezing on bone graft incorporation: an experimental study in rats. J Orthop Res 26:925–931

    Article  PubMed  Google Scholar 

  26. Sauer HD, Schoettle H (1979) The stability of osteosyntheses bridging defects. Arch Orthop Trauma Surg 95:27–30

    Article  PubMed  CAS  Google Scholar 

  27. Simpson AH (1985) The blood supply of the periosteum. J Anat 140(Pt 4):697–704

    PubMed  Google Scholar 

  28. Utvag SE, Grundnes O, Reikeras O (1994) Healing of segmental and simple fractures in rats. Acta Orthop Scand 65:559–563

    Article  PubMed  CAS  Google Scholar 

  29. Utvag SE, Grundnes O, Rindal DB et al (2003) Influence of extensive muscle injury on fracture healing in rat tibia. J Orthop Trauma 17:430–435

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Our acknowledgements go to Hong Qu (Chief Engineer, Centre for Molecular biology and neuroscience, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo), Dr Ragnhild Gunderson (Department of Radiology, Rikshospitalet, Oslo University Hospital), Dr Ulf E.W. Sigurdsen (Department of Orthopaedics, Akershus University Hospital), Per Ludvigsen (Engineer, Biomechanics Laboratory, Rikshospitalet, Oslo University Hospital), and The Department of Comparative Medicine (Rikshospitalet, Oslo University Hospital).

Conflict of interest

The authors confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona I. Winge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winge, M.I., Reikerås, O. & Røkkum, M. Calcium phosphate bone cement: a possible alternative to autologous bone graft. A radiological and biomechanical comparison in rat tibial bone. Arch Orthop Trauma Surg 131, 1035–1041 (2011). https://doi.org/10.1007/s00402-011-1271-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-011-1271-z

Keywords

Navigation