Skip to main content

Advertisement

Log in

Aprotinin application has no negative effect on osseous implant integration: a biomechanical and histomorphometric investigation in a rat model

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

An Erratum to this article was published on 04 March 2008

Abstract

Intraoperative blood loss requiring allogenic blood transfusion (ABT) is a common problem in major orthopedic surgery. Since transfusion related side effects up to fatal consequences due to blood type incompatibility cannot be excluded completely, it is desirable to reduce the amount of blood loss and transfusions to a minimum. Encouraging results in the application of aprotinin, a natural protease-inhibitor with antifibrinolytic, bleeding-reducing properties, in thoracic-, heart- and abdominal surgery led to the use of aprotinin also in orthopedic surgery. One important safety issue in the use of aprotinin in orthopedic surgery is a possible negative effect on the osseous integration of an implant due to the multiple interactions of aprotinin with several enzymatic systems. In this study, we therefore investigated the influence of aprotinin on the osseous ingrowth of a titanium-implant in a rat model. Forty female Sprague–Dawley rats underwent unilateral retrograde nailing of the femur. Animals were divided in two groups, one receiving i.v. aprotinin intraoperatively, the other group receiving the same amount as saline solution. After 56 days animals were killed and from each group half of the femora were prepared for biomechanical testing, the other half for histological examination. The push-out experiment revealed no significant difference between the aprotinin-group and the control-group, both showing comparable shear stresses. In addition, the histomorphometrical analysis showed comparable implant integration between both groups. The results demonstrate that perioperative aprotinin application has no negative effect on osseous implant integration in a rat model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Beierlein W, Scheule AM, Dietrich W, Ziemer G (2005) Forty years of clinical aprotinin use: a review of 124 hypersensitivity reactions. Ann Thorac Surg 79(2):741–748

    Article  PubMed  Google Scholar 

  2. Bethge JF, Babayan R, Borm HP, von Fehrentheil R, ten Hoff H, Hose H, Mangels P, Piening H, Reimers C, Wider U (1979) Experimental acceleration of fracture repair by biochemical media. Res Exp Med (Berl) 175(3):197–222

    Article  CAS  Google Scholar 

  3. Brown JR, Birkmeyer NJ, O’Connor GT (2007) Meta-analysis comparing the effectiveness and adverse outcomes of antifibrinolytic agents in cardiac surgery. Circulation 115(22):2801–2813

    Article  PubMed  CAS  Google Scholar 

  4. Clasen C, Jochum M, Mueller-Ester1 W (1987) Feasibility study of very high dose aprotinin in polytrauma patients. In: Schlag G, Red1 H (eds) First Vienna Shock Forum. Pathophysiological role of mediators and mediator inhibitors in shock. Liss, New York, pp 175–183

  5. Engles L (2005) Review and application of serine protease inhibition in coronary artery bypass graft surgery. Am J Health Syst Pharm 62:S9–14

    Article  PubMed  CAS  Google Scholar 

  6. Fiebig E (1998) Safety of the blood supply. Clin Orthop 357:6–18

    Article  PubMed  Google Scholar 

  7. Frost A, Jonsson KB, Ridefelt P, Nilsson O, Ljunghall S, Ljungren O (1999) Thrombin, but not bradykinin, stimulates proliferation in isolated human osteoblasts, via a mechanism not dependent on endogenous prostaglandin formation. Acta Orthop Scand 70(5):497–503

    Article  PubMed  CAS  Google Scholar 

  8. Hunter D (2006) First gather the data. N Engl J Med 354(4):329–331

    Article  PubMed  CAS  Google Scholar 

  9. Innerhofer P, Walleczek C, Luz G, Hobisch-Hagen P, Benzer A, Stockl B, Hessenberger G, Nussbaumer W, Schobersberger W (1999) Transfusion of buffy coat-depleted blood components and risk of postoperative infection in orthopedic patients. Transfusion 39(6):625–632

    Article  PubMed  CAS  Google Scholar 

  10. Kokoszka A, Kuflik P, Bitan F, Casden A, Neuwirth M (2005) Evidence-based review of the role of aprotinin in blood conservation during orthopaedic surgery. J Bone Joint Surg Am 87(5):1129–1136

    Article  PubMed  Google Scholar 

  11. Krishnan LK, Vijayan Al A, Uma Shankar PR, Mohanty M (2003) Fibrinolysis inhibitors adversely affect remodeling of tissues sealed with fibrin glue. Biomaterials 24(2):321–327

    Article  PubMed  CAS  Google Scholar 

  12. Lerner UH (1994) Regulation of bone metabolism by the kallikrein–kinin system, the coagulation cascade, and the acute-phase reactants. Oral Surg Oral Med Oral Pathol 78(4):481–493

    Article  PubMed  CAS  Google Scholar 

  13. Lerner UH, Gustafson GT (1988) Blood coagulation and bone metabolism: some characteristics of the bone resorptive effect of thrombin in mouse calvarial bones in vitro. Biochim Biophys Acta 964(3):309–318

    PubMed  CAS  Google Scholar 

  14. Levy JH, Despotis GJ, Spitznagel E (2006) Should aprotinin continue to be used during cardiac surgery? Nat Clin Pract Cardiovasc Med 3(7):360–361

    Article  PubMed  Google Scholar 

  15. Levy JH, Sypniewski E (2004) Aprotinin: a pharmacologic overview. Orthopedics 27(6 Suppl):s653–658 (review)

    PubMed  Google Scholar 

  16. Lien M, Milbrandt EB (2006) A disheartening story: aprotinin in cardiac surgery. Crit Care 10(6):317

    Article  PubMed  Google Scholar 

  17. Mangano DT, Tudor IC, Dietzel C (2006) Multicenter Study of Perioperative Ischemia Research Group; Ischemia Research and Education Foundation: The risk associated with aprotinin in cardiac surgery. N Engl J Med 354(4):353–365

    Article  PubMed  CAS  Google Scholar 

  18. Murkin JM, Haig GM, Beer KJ, Cicutti N, McCutchen J, Comunale ME, Hall R, Ruzicka BB (2000) Aprotinin decreases exposure to allogeneic blood during primary unilateral total hip replacement. J Bone Joint Surg Am 82:675–684

    PubMed  CAS  Google Scholar 

  19. Murphy P, Heal JM, Blumberg N (1991) Infection or suspected infection after hip replacement surgery with autologous or homologous blood transfusions. Transfusion 31(3):212–217

    Article  PubMed  CAS  Google Scholar 

  20. Pagel CN, Sivagurunathan S, Loh LH, Tudor EM, Pike RN, Mackie EJ (2006) Functional responses of bone cells to thrombin. Biol Chem 387(8):1037–1041

    Article  PubMed  CAS  Google Scholar 

  21. Pagel CN, de Niese MR, Abraham LA, Chinni C, Song SJ, Pike RN, Mackie EJ (2003) Inhibition of osteoblast apoptosis by thrombin. Bone 33(4):733–43; Erratum in Bone 2004 July; 35(1):343

    Article  PubMed  CAS  Google Scholar 

  22. Pintigny D, Dachary-Pregent J (1992) Aprotinin can inhibit the proteolytic activity of thrombin. A fluorescence and an enzymatic study. Eur J Biochem 207(1):89–95

    Article  PubMed  CAS  Google Scholar 

  23. Ray M, Hatcher S, Whitehouse SL, Crawford S, Crawford R (2005) Aprotinin and epsilon aminocaproic acid are effective in reducing blood loss after primary total hip arthroplasty—a prospective randomized double-blind placebo-controlled study. J Thromb Haemost 3:1421–1427

    Article  PubMed  CAS  Google Scholar 

  24. Royston D (1992) High-dose aprotinin therapy: a review of the first five years’ experience. J Cardiothorac Vasc Anesth 6(1):76–100

    Article  PubMed  CAS  Google Scholar 

  25. Royston D, Taylor KM, Bidstrup BP, Sapsford RN (1987) Effect of aprotinin on need for blood transfusion after repeat open-heart surgery. Lancet 2:1289–1291

    Article  PubMed  CAS  Google Scholar 

  26. Schmidmaier G, Wildemann B, Schwabe P, Stange R, Hoffmann J, Sudkamp NP, Haas NP, Raschke M (2002) A new electrochemically graded hydroxyapatite coating for osteosynthetic implants promotes implant osteointegration in a rat model. J Biomed Mater Res 63:168–172

    Article  PubMed  CAS  Google Scholar 

  27. Shiga T, Wajima Z, Inoue T, Sakamoto A (2005) Aprotinin in major orthopedic surgery: a systematic review of randomized controlled trials. Anesth Analg 101(6):1602–1607

    Article  PubMed  CAS  Google Scholar 

  28. Smith PK, Muhlbaier LH (1996) Aprotinin: safe and effective only with the full-dose regimen. Ann Thorac Surg 62:1575–1577

    Article  PubMed  CAS  Google Scholar 

  29. Vanek T, Jares M, Fajt R, Straka Z, Jirasek K, Kolesar M, Brucek P, Maly M (2005) Fibrinolytic inhibitors in off-pump coronary surgery: a prospective, randomized, double-blind TAP study (tranexamic acid, aprotinin, placebo). Eur J Cardiothorac Surg 28:563–568

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Bayer HealthCare Germany for supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Wildemann.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00402-008-0604-z

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faensen, B., Hain, C., Höhne, J. et al. Aprotinin application has no negative effect on osseous implant integration: a biomechanical and histomorphometric investigation in a rat model. Arch Orthop Trauma Surg 129, 51–56 (2009). https://doi.org/10.1007/s00402-008-0582-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-008-0582-1

Keywords

Navigation