Skip to main content

Advertisement

Log in

Accumulation of TDP-43 and α-actin in an amyotrophic lateral sclerosis patient with the K17I ANG mutation

  • Case Report
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

A K17I mutation in the ANG gene encoding angiogenin has been identified in a case that we previously published as ALS with neuronal intranuclear protein inclusions (Seilhean et al. in Acta Neuropathol 108:81–87, 2004). These inclusions were immunoreactive for smooth muscle α-actin but not for angiogenin. Moreover, they were not labeled by anti-TDP-43 antibodies, while numerous cytoplasmic inclusions immunoreactive for ubiquitin, p62 and TDP-43 were detected in both oligodendrocytes and neurons in various regions of the central nervous system. In addition, expression of smooth muscle α-actin was increased in the liver where severe steatosis was observed. This is the first neuropathological description of a case with an ANG mutation. Angiogenin is known to interact with actin. Like other proteins involved in ALS pathogenesis, such as senataxin, TDP-43 and FUS/TLS, it plays a role in RNA maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Baker M, Mackenzie I, Pickering-Brown S et al (2006) Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442:916–919

    Article  PubMed  CAS  Google Scholar 

  2. Bowman A, Yoo S, Dantuma N, Zoghbi H (2005) Neuronal dysfunction in a polyglutamine disease model occurs in the absence of ubiquitin-proteasome system impairment and inversely correlates with the degree of nuclear inclusion formation. Hum Mol Genet 14:679–691

    Article  PubMed  CAS  Google Scholar 

  3. Braak H, Braak E (1989) Cortical and subcortical argyrophilic grains characterize a disease associated with adult onset dementia. Neuropathol Appl Neurobiol 15:13–26

    Article  PubMed  CAS  Google Scholar 

  4. Cairns N, Neumann M, Bigio E et al (2007) TDP-43 in familial and sporadic frontotemporal lobar degeneration with ubiquitin inclusions. Am J Pathol 171:227–240

    Article  PubMed  CAS  Google Scholar 

  5. Cao Y (2007) Angiogenesis modulates adipogenesis and obesity. J Clin Invest 117:2362–2368

    Article  PubMed  CAS  Google Scholar 

  6. Chen Y, Bennett C, Huynh H et al (2004) DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am J Hum Genet 74:1128–1135

    Article  PubMed  CAS  Google Scholar 

  7. Crabtree B, Thiyagarajan N, Prior S et al (2007) Characterization of human angiogenin variants implicated in amyotrophic lateral sclerosis. Biochemistry 46:11810–11818

    Article  PubMed  CAS  Google Scholar 

  8. Daoud H, Valdmanis P, Kabashi E et al (2008) Contribution of TARDBP mutations to sporadic amyotrophic lateral sclerosis. J Med Genet (Epub ahead of print)

  9. Davidson Y, Kelley T, Mackenzie I et al (2007) Ubiquitinated pathological lesions in frontotemporal lobar degeneration contain the TAR DNA-binding protein, TDP-43. Acta Neuropathol 113:521–533

    Article  PubMed  CAS  Google Scholar 

  10. Dickson D, Josephs K, Amador-Ortiz C (2007) TDP-43 in differential diagnosis of motor neuron disorders. Acta Neuropathol 114:71–79

    Article  PubMed  CAS  Google Scholar 

  11. Dunah A, Wyszynski M, Martin D, Sheng M, Standaert D (2000) α-Actinin-2 in rat striatum: localization and interaction with NMDA glutamate receptor subunits. Brain Res Mol Brain Res 79:77–87

    Article  PubMed  CAS  Google Scholar 

  12. Dupuis L, Corcia P, Fergani A et al (2008) Dyslipidemia is a protective factor in amyotrophic lateral sclerosis. Neurology 70:988–989

    Article  Google Scholar 

  13. Etoh T, Shibuta K, Barnard G, Keitano S, Mori M (2000) Angiogenin expression in human colorectal cancer: the role of focal macrophage infiltration. Clin Cancer Res 6:3545–3551

    PubMed  CAS  Google Scholar 

  14. Fernández-Santiago R, Hoenig S, Lichtner P et al (2009) Identification of novel Angiogenin (ANG) gene missense variants in German patients with amyotrophic lateral sclerosis. J Neurol (Epub ahead of print)

  15. Fett J, Strydom D, Lobb R et al (1985) Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry 24:5480–5486

    Article  PubMed  CAS  Google Scholar 

  16. Gitcho M, Baloh R, Chakraverty S et al (2008) TDP-43 A315T mutation in familial motor neuron disease. Ann Neurol 63:535–538

    Article  PubMed  CAS  Google Scholar 

  17. Greenway M, Alexander M, Ennis S et al (2004) A novel candidate region for ALS on chromosome 14q11.2. Neurology 63:1936–1938

    PubMed  CAS  Google Scholar 

  18. Greenway M, Andersen P, Russ C et al (2006) ANG mutations segregate with familial and “sporadic” amyotrophic lateral sclerosis. Nat Genet 30:411–413

    Article  Google Scholar 

  19. Hatzi E, Badet J (1999) Expression of receptors for human angiogenin in vascular smooth muscle cells. Eur J Biochem 260:825–832

    Article  PubMed  CAS  Google Scholar 

  20. Hetman M, Gozdz A (2004) Role of extracellular signal regulated kinases 1 and 2 in neuronal survival. Eur J Biochem 271:2050–2055

    Article  PubMed  CAS  Google Scholar 

  21. Hiji M, Takahashi T, Fukuba H, Yamashita H, Kohriyama T, Matsumoto M (2008) White matter lesions in the brain with frontotemporal lobar degeneration with motor neuron disease: TDP-43-immunopositive inclusions co-localize with p62, but not ubiquitin. Acta Neuropathol 116:183–191

    Article  PubMed  CAS  Google Scholar 

  22. Hisai H, Kato J, Kobune M et al (2003) Increased expression of angiogenin in hepatocellular carcinoma in correlation with tumor vascularity. Clin Cancer Res 9:4852–4859

    PubMed  CAS  Google Scholar 

  23. Hu G, Chang S, Riordan J, Vallee B (1991) An angiogenin-binding protein from endothelial cells. Proc Natl Acad Sci USA 88:2227–2231

    Article  PubMed  CAS  Google Scholar 

  24. Hu G, Riordan J, Vallee B (1994) Angiogenin promotes invasiveness of cultured endothelial cells by stimulation of cell-associated proteolytic activities. Proc Natl Acad Sci USA 91:12096–12100

    Article  PubMed  CAS  Google Scholar 

  25. Hu G, Riordan J, Vallee B (1997) A putative angiogenin receptor in angiogenin-responsive human endothelial cells. Proc Natl Acad Sci USA 94:2204–2209

    Article  PubMed  CAS  Google Scholar 

  26. Hu G, Strydom D, Fett J, Riordan J, Vallee B (1993) Actin is a binding protein for angiogenin. Proc Natl Acad Sci USA 90:1217–1221

    Article  PubMed  CAS  Google Scholar 

  27. Hu H, Gao X, Sun Y, Zhou J, Yang M, Xu Z (2005) α-Actinin-2, a cytoskeletal protein, binds to angiogenin. Biochem Biophys Res Commun 329:661–667

    Article  PubMed  CAS  Google Scholar 

  28. Jimi S, Ito K, Kohno K, Kuwano M, Itagaki Y, Ishikawa H (1995) Modulation by bovine angiogenin of tubular morphogenesis and expression of plasminogen activator in bovine endothelial cells. Biochem Biophys Res Commun 211:476–483

    Article  PubMed  CAS  Google Scholar 

  29. Josephs K, Lin W, Ahmed Z, Stroh D, Graff-Radford N, Dickson D (2008) Frontotemporal lobar degeneration with ubiquitin-positive, but TDP-43-negative inclusions. Acta Neuropathol 116:159–167

    Article  PubMed  CAS  Google Scholar 

  30. Kabashi E, Valdmanis P, Dion P et al (2008) TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40:572–574

    Article  PubMed  CAS  Google Scholar 

  31. Kieran D, Sebastia J, Greenway M et al (2008) Control of motoneuron survival by angiogenin. J Neurosci 28:14056–14061

    Article  PubMed  CAS  Google Scholar 

  32. Kim H, Kang D, Kim H, Kang S, Chang S (2007) Angiogenin-induced protein kinase B/Akt activation is necessary for angiogenesis but is independent of nuclear translocation of angiogenin in HUVE cells. Biochem Biophys Res Commun 352:509–513

    Article  PubMed  CAS  Google Scholar 

  33. Komori T (1999) Tau-positive glial inclusions in progressive supranuclear palsy, corticobasal degeneration and Pick’s disease. Brain Pathol 9:663–679

    PubMed  CAS  Google Scholar 

  34. Kovacs G, Majtenyi K, Spina S et al (2008) White matter tauopathy with globular glial inclusions: a distinct sporadic frontotemporal lobar degeneration. J Neuropathol Exp Neurol 67:963–975

    Article  PubMed  Google Scholar 

  35. Kwiatkowski T, Bosco D, Leclerc A et al (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323:1205–1208

    Article  PubMed  CAS  Google Scholar 

  36. Lagier-Tourenne C, Cleveland D (2009) Rethinking ALS: the FUS about TDP-43. Cell 136:1001–1004

    Article  PubMed  CAS  Google Scholar 

  37. Landers J, Leclerc A, Shi L et al (2008) New VAPB deletion variant and exclusion of VAPB mutations in familial ALS. Neurology 70:1179–1185

    Article  PubMed  CAS  Google Scholar 

  38. Lin X, Yue P, Chen Z, Schonfeld G (2005) Hepatic triglyceride contents are genetically determined in mice: results of a strain survey. Am J Physiol Gastrointest Liver Physiol 288:G1179–G1189

    Article  PubMed  CAS  Google Scholar 

  39. Mackenzie I, Baker M, Pickering-Brown S et al (2006) The neuropathology of frontotemporal lobar degeneration caused by mutations in the progranulin gene. Brain 129:3081–3090

    Article  PubMed  Google Scholar 

  40. Maquat L (2004) Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat Rev Mol Cell Biol 5:89–99

    Article  PubMed  CAS  Google Scholar 

  41. Moroianu J, Fett J, Riordan J, Vallee B (1993) Actin is a surface component of calf pulmonary artery endothelial cells in culture. Proc Natl Acad Sci USA 90:3815–3819

    Article  PubMed  CAS  Google Scholar 

  42. Moroianu J, Riordan J (1994) Nuclear translocation of angiogenin in proliferating endothelial cells is essential to its angiogenic activity. Proc Natl Acad Sci USA 91:1677–1681

    Article  PubMed  CAS  Google Scholar 

  43. Nishihira Y, Tan C, Onodera O et al (2008) Sporadic amyotrophic lateral sclerosis: two pathological patterns shown by analysis of distribution of TDP-43-immunoreactive neuronal and glial cytoplasmic inclusions. Acta Neuropathol 116:169–182

    Article  PubMed  CAS  Google Scholar 

  44. Nishimura A, Mitne-Neto M, Silva H et al (2004) A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet 75:822–831

    Article  PubMed  CAS  Google Scholar 

  45. Oosthuyse B, Moons L, Storkebaum E et al (2001) Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet 28:131–138

    Article  PubMed  CAS  Google Scholar 

  46. Papp M, Kahn J, Lantos P (1989) Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy-Drager syndrome). J Neurol Sci 94:79–100

    Article  PubMed  CAS  Google Scholar 

  47. Rademakers R, Eriksen J, Baker M et al (2008) Common variation in the miR-659 binding-site of GRN is a major risk factor for TDP43-positive frontotemporal dementia. Hum Mol Genet 17:3631–3642

    Article  PubMed  CAS  Google Scholar 

  48. Roark E, Keene D, Haudenschild C, Godyna S, Little C, Argraves W (1995) The association of human fibulin-1 with elastic fibers: an immunohistological, ultrastructural, and RNA study. J Histochem Cytochem 43:401–411

    PubMed  CAS  Google Scholar 

  49. Roeber S, Mackenzie I, Kretzschmar H, Neumann M (2008) TDP-43-negative FTLD-U is a significant new clinico-pathological subtype of FTLD. Acta Neuropathol 116:147–157

    Article  PubMed  CAS  Google Scholar 

  50. Rosen D, Siddique T, Patterson D et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62

    Article  PubMed  CAS  Google Scholar 

  51. Rosenmund C, Westbrook G (1993) Calcium-induced actin depolymerization reduces NMDA channel activity. Neuron 10:805–814

    Article  PubMed  CAS  Google Scholar 

  52. Rutherford N, Zhang Y, Baker M et al (2008) Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis. PLoS Genet 4:e1000193

    Article  PubMed  Google Scholar 

  53. Seilhean D, Takahashi J, El Achimi K et al (2004) Amyotrophic lateral sclerosis with neuronal intranuclear protein inclusions. Acta Neuropathol 108:81–87

    Article  PubMed  Google Scholar 

  54. Shapiro R, Strydom D, Olson K, Vallee B (1987) Isolation of angiogenin from normal human plasma. Biochemistry 26:5141–5146

    Article  PubMed  CAS  Google Scholar 

  55. Shapiro R, Vallee B (1989) Site-directed mutagenesis of histidine-13 and histidine-114 of human angiogenin. Alanine derivatives inhibit angiogenin-induced angiogenesis. Biochemistry 28:7401–7408

    Article  PubMed  CAS  Google Scholar 

  56. Sjöblom B, Salmazo A, Djinovic-Carugo K (2008) α-actinin structure and regulation. Cell Mol Life Sci 65:2688–2701

    Article  PubMed  Google Scholar 

  57. Sreedharan J, Blair I, Tripathi V et al (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319:1668–1672

    Article  PubMed  CAS  Google Scholar 

  58. Subramanian V, Feng Y (2007) A new role for angiogenin in neurite growth and pathfinding: implications for amyotrophic lateral sclerosis. Hum Mol Genet 16:1445–1453

    Article  PubMed  CAS  Google Scholar 

  59. Tsuji T, Sun Y, Kishimoto K et al (2005) Angiogenin is translocated to the nucleus of HeLa cells and is involved in ribosomal RNA transcription and cell proliferation. Cancer Res 65:1352–1360

    Article  PubMed  CAS  Google Scholar 

  60. Van Deerlin V, Leverenz J, Bekris L et al (2008) TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis. Lancet Neurol 7:409–416

    Article  PubMed  Google Scholar 

  61. Vance C, Rogelj B, Hortobagyi T et al (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323:1208–1211

    Article  PubMed  CAS  Google Scholar 

  62. Vandekerckhove J, Weber K (1978) At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino-terminal tryptic peptide. J Mol Biol 126:783–802

    Article  PubMed  CAS  Google Scholar 

  63. Weiner H, Weiner L, Swain J (1987) Tissue distribution and developmental expression of the messenger RNA encoding angiogenin. Science 237:280–282

    Article  PubMed  CAS  Google Scholar 

  64. Wu D, Yu W, Kishikawa H et al (2007) Angiogenin loss-of-function mutations in amyotrophic lateral sclerosis. Ann Neurol 62:609–617

    Article  PubMed  CAS  Google Scholar 

  65. Wyszynski M, Lin J, Rao A et al (1997) Competitive binding of α-actinin and calmodulin to the NMDA receptor. Nature 385:439–442

    Article  PubMed  CAS  Google Scholar 

  66. Yamasaki S, Ivanov P, Hu G, Anderson P (2009) Angiogenin cleaves tRNA and promotes stress-induced translational repression. J Cell Biol 185:35–42

    Google Scholar 

  67. Yang Y, Hentati A, Deng H-X et al (2001) The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nat Genet 29:160–165

    Article  PubMed  CAS  Google Scholar 

  68. Yokoseki A, Shiga A, Tan C et al (2008) TDP-43 mutation in familial amyotrophic lateral sclerosis. Ann Neurol 63:538–542

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Many thanks to the technical staff of Escourolle laboratory; to Drs Odile Dubourg, Eva Comperat, and Frédéric Charlotte who provided some of the control cases; to the Institute of Myology and Laboratory of Pathology, who provided some of the antibodies and to Pr. Umberto De Girolami for helpful advice on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle Seilhean.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seilhean, D., Cazeneuve, C., Thuriès, V. et al. Accumulation of TDP-43 and α-actin in an amyotrophic lateral sclerosis patient with the K17I ANG mutation. Acta Neuropathol 118, 561–573 (2009). https://doi.org/10.1007/s00401-009-0545-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-009-0545-9

Keywords

Navigation