Skip to main content

Advertisement

Log in

Truncated tau at D421 is associated with neurodegeneration and tangle formation in the brain of Alzheimer transgenic models

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

In addition to tau hyperphosphorylation, tau truncation is also detected in Alzheimer’s disease (AD) patients. In the brain of AD transgenic mouse models, the pathological details of truncated tau are not well characterized. In this study, we analyzed spatial relationships among tau truncation, tau phosphorylation and neurodegeneration or tangle formation in a tauP301L single transgenic mouse model and a triple transgenic mouse model that produces both amyloid plaques, and neurofibrillary tangles. During development of tau pathology, the spatial relationship between hyperphosphorylation and truncation of tau exhibited a shift from colocalization at low densities of hyperphosphorylated tau to partial dissociation at high densities. Importantly, we detected a few neurons that contained abundant truncated tau but were lacking hyperphosphorylation, and these neurons exhibited remarkable nuclear condensation. In the case of colocalization, truncated tau was commonly associated with high immunoreactivity of hyperphosphorylated tau and dense Gallyas silver staining. Taken together, our study shows that tau truncation appears after tau hyperphosphorylation in the brain of two transgenic mouse models, and that accumulation of truncated tau, in the absence or the presence of phosphorylated tau, is closely associated with a subset of neurons undergoing degeneration or containing neurofibrillary tangles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alonso A, Zaidi T, Novak M, Grundke-Iqbal I, Iqbal K (2001) Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proc Natl Acad Sci USA 98:6923–6928. doi:10.1073/pnas.121119298

    Article  PubMed  CAS  Google Scholar 

  2. Alonso AC, Grundke-Iqbal I, Iqbal K (1996) Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat Med 2:783–787. doi:10.1038/nm0796-783

    Article  PubMed  CAS  Google Scholar 

  3. Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42:631–639

    PubMed  CAS  Google Scholar 

  4. Basurto-Islas G, Luna-Munoz J, Guillozet-Bongaarts AL et al (2008) Accumulation of aspartic acid421- and glutamic acid391-cleaved tau in neurofibrillary tangles correlates with progression in Alzheimer disease. J Neuropathol Exp Neurol 67:470–483

    PubMed  CAS  Google Scholar 

  5. Canu N, Dus L, Barbato C et al (1998) Tau cleavage and dephosphorylation in cerebellar granule neurons undergoing apoptosis. J Neurosci 18:7061–7074

    PubMed  CAS  Google Scholar 

  6. Chung CW, Song YH, Kim IK et al (2001) Proapoptotic effects of tau cleavage product generated by caspase-3. Neurobiol Dis 8:162–172. doi:10.1006/nbdi.2000.0335

    Article  PubMed  CAS  Google Scholar 

  7. Delobel P, Lavenir I, Fraser G et al (2008) Analysis of tau phosphorylation and truncation in a mouse model of human tauopathy. Am J Pathol 172:123–131. doi:10.2353/ajpath.2008.070627

    Article  PubMed  CAS  Google Scholar 

  8. Fasulo L, Ugolini G, Visintin M et al (2000) The neuronal microtubule-associated protein tau is a substrate for caspase-3 and an effector of apoptosis. J Neurochem 75:624–633. doi:10.1046/j.1471-4159.2000.0750624.x

    Article  PubMed  CAS  Google Scholar 

  9. Gamblin TC, Chen F, Zambrano A et al (2003) Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer’s disease. Proc Natl Acad Sci USA 100:10032–10037. doi:10.1073/pnas.1630428100

    Article  PubMed  CAS  Google Scholar 

  10. Gomez-Isla T, Hollister R, West H et al (1997) Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol 41:17–24. doi:10.1002/ana.410410106

    Article  PubMed  CAS  Google Scholar 

  11. Grundke-Iqbal I, Iqbal K, Tung YC et al (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83:4913–4917. doi:10.1073/pnas.83.13.4913

    Article  PubMed  CAS  Google Scholar 

  12. Guillozet-Bongaarts AL, Cahill ME, Cryns VL et al (2006) Pseudophosphorylation of tau at serine 422 inhibits caspase cleavage: in vitro evidence and implications for tangle formation in vivo. J Neurochem 97:1005–1014. doi:10.1111/j.1471-4159.2006.03784.x

    Article  PubMed  CAS  Google Scholar 

  13. Guillozet-Bongaarts AL, Garcia-Sierra F, Reynolds MR et al (2005) Tau truncation during neurofibrillary tangle evolution in Alzheimer’s disease. Neurobiol Aging 26:1015–1022. doi:10.1016/j.neurobiolaging.2004.09.019

    Article  PubMed  CAS  Google Scholar 

  14. Horowitz PM, Patterson KR, Guillozet-Bongaarts AL et al (2004) Early N-terminal changes and caspase-6 cleavage of tau in Alzheimer’s disease. J Neurosci 24:7895–7902. doi:10.1523/JNEUROSCI.1988-04.2004

    Article  PubMed  CAS  Google Scholar 

  15. Hrnkova M, Zilka N, Minichova Z, Koson P, Novak M (2007) Neurodegeneration caused by expression of human truncated tau leads to progressive neurobehavioural impairment in transgenic rats. Brain Res 1130:206–213. doi:10.1016/j.brainres.2006.10.085

    Article  PubMed  CAS  Google Scholar 

  16. Jankowsky JL, Fadale DJ, Anderson J et al (2004) Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum Mol Genet 13:159–170. doi:10.1093/hmg/ddh019

    Article  PubMed  CAS  Google Scholar 

  17. Kosik KS, Joachim CL, Selkoe DJ (1986) Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci USA 83:4044–4048. doi:10.1073/pnas.83.11.4044

    Article  PubMed  CAS  Google Scholar 

  18. Lewis J, McGowan E, Rockwood J et al (2000) Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat Genet 25:402–405. doi:10.1038/78078

    Article  PubMed  CAS  Google Scholar 

  19. Mondragon-Rodriguez S, Basurto-Islas G, Santa-Maria I et al (2008) Cleavage and conformational changes of tau protein follow phosphorylation during Alzheimer’s disease. Int J Exp Pathol 89:81–90. doi:10.1111/j.1365-2613.2007.00568.x

    Article  PubMed  CAS  Google Scholar 

  20. Novak M, Kabat J, Wischik CM (1993) Molecular characterization of the minimal protease resistant tau unit of the Alzheimer’s disease paired helical filament. EMBO J 12:365–370

    PubMed  CAS  Google Scholar 

  21. Pevalova M, Filipcik P, Novak M, Avila J, Iqbal K (2006) Post-translational modifications of tau protein. Bratisl Lek Listy (Tlacene Vyd) 107:346–353

    CAS  Google Scholar 

  22. Ramsden M, Kotilinek L, Forster C et al (2005) Age-dependent neurofibrillary tangle formation, neuron loss, and memory impairment in a mouse model of human tauopathy (P301L). J Neurosci 25:10637–10647. doi:10.1523/JNEUROSCI.3279-05.2005

    Article  PubMed  CAS  Google Scholar 

  23. Rissman RA, Poon WW, Blurton-Jones M et al (2004) Caspase-cleavage of tau is an early event in Alzheimer disease tangle pathology. J Clin Invest 114:121–130

    PubMed  CAS  Google Scholar 

  24. Rohn TT, Rissman RA, Davis MC et al (2002) Caspase-9 activation and caspase cleavage of tau in the Alzheimer’s disease brain. Neurobiol Dis 11:341–354. doi:10.1006/nbdi.2002.0549

    Article  PubMed  CAS  Google Scholar 

  25. Sun A, Liu M, Nguyen XV, Bing G (2003) P38 MAP kinase is activated at early stages in Alzheimer’s disease brain. Exp Neurol 183:394–405. doi:10.1016/S0014-4886(03)00180-8

    Article  PubMed  CAS  Google Scholar 

  26. Sun A, Nguyen XV, Bing G (2002) Comparative analysis of an improved thioflavin-s stain, Gallyas silver stain, and immunohistochemistry for neurofibrillary tangle demonstration on the same sections. J Histochem Cytochem 50:463–472

    PubMed  CAS  Google Scholar 

  27. Zilka N, Filipcik P, Koson P et al (2006) Truncated tau from sporadic Alzheimer’s disease suffices to drive neurofibrillary degeneration in vivo. FEBS Lett 580:3582–3588. doi:10.1016/j.febslet.2006.05.029

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank K.P. Lu and D. Saffen for critical comments on this study. This work was supported by grants from the National Natural Science Foundation of China (30470594, 30772282), the Shanghai Science and Technology Committee (07DJ14005), and the Basic Research Program of China (973) (2007CB507400).

Conflict of interest statement

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anyang Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Zhang, X. & Sun, A. Truncated tau at D421 is associated with neurodegeneration and tangle formation in the brain of Alzheimer transgenic models. Acta Neuropathol 117, 687–697 (2009). https://doi.org/10.1007/s00401-009-0491-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-009-0491-6

Keywords

Navigation