Skip to main content

Advertisement

Log in

Pattern of FGF-2 isoform expression correlated with its biological action in experimental prolactinomas

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Fibroblast growth factor-2 (FGF-2) synthesized in the pituitary is involved in the formation and progression of pituitary tumors. The aim of this study was to analyze the pattern expression of two FGF-2 isoforms at different subcellular levels and to determine its correlation with prolactinoma development. Estrogen administration to male rats for 7, 20, and 60 days generated pituitary tumors, with lactotrophs being the prevalent cell type. Ultrastructural immunolabeling showed FGF-2 in the cytosolic and nuclear compartments of somatotrophs, lactotrophs and gonadotrophs, as well as in folliculo-stellate cells of normal rats. Estrogen stimulation increased FGF-2 immunoreactivity in various tumors and enhanced the expression of two FGF-2 isoforms, 18 and 22 kDa, as quantified by western blot. The 18 kDa isoform observed in cytosol extracts reached the highest levels after 60 days of hormonal stimulation and this was related to lactotroph proliferation. However, the 22 kDa FGF-2 isoform was only detected in the nuclear compartment and achieved the maximum expression at 7 days of estrogen treatment, without any correlation with lactotroph proliferation. These results suggest that the 18 kDa FGF-2 may play a role in the modulation of lactotroph proliferation in prolactinomas induced by estrogen. The overproduction of both FGF-2 isoforms appears to be implicated in autocrine–paracrine–intracrine mitogenic loops; this FGF-2 activity could lead to uncontrolled cell growth, angiogenesis, and tumor formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Akashi T, Minami J, Ishige Y, Eishi Y, Takizawa T, Koike M, Yanagishita M (2005) Basement membrane matrix modifies cytokine interactions between lung cancer cells and fibroblasts. Pathobiology 72:250–259

    Article  PubMed  CAS  Google Scholar 

  2. Amano O, Yoshitake Y, Nishikawa K, Iseki S (1993) Immunocytochemical localization of basic fibroblast growth factor in the rat pituitary gland. Arch Histol Cytol 56:269–276

    PubMed  CAS  Google Scholar 

  3. Arnaud E, Touriol C, Boutonnet C, Gensac MC, Vagner S, Prats H, Prats AC (1999) A new 34-kilodalton isoform of human fibroblast growth factor 2 is cap dependently synthesized by using a non-AUG start codon and behaves as a survival factor. Mol Cell Biol 19:505–514

    PubMed  CAS  Google Scholar 

  4. Asa S, Ezzat S (2002) The pathogenesis of pituitary tumours. Nat Rev Cancer 2:1–12

    Article  CAS  Google Scholar 

  5. Backhaus R, Zehe C, Wegehingel S, Kehlenbach A, Schwappach B, Nickel W (2004) Unconventional protein secretion: membrane translocation of FGF-2 does not require protein unfolding. J Cell Sci 117:1727–1736

    Article  PubMed  CAS  Google Scholar 

  6. Baird A, Esch F, Mormede P, Ueno N, Ling N, Bohlen P, Ying SY, Wehrenberg WB, Guillemin R (1986) Molecular characterization of fibroblast growth factor: distribution and biological activities in various tissues. Recent Prog Horm Res 42:143–205

    PubMed  CAS  Google Scholar 

  7. Bikfalvi A, Klein S, Pintucci G, Rifkin D (1997) Biological roles of fibroblast growth factor 2. Endocr Rev 18:26–45

    Article  PubMed  CAS  Google Scholar 

  8. Bugler B, Amalric F, Prats H (1991) Alternative initiation of translation determines cytoplasmic or nuclear localization of basic fibroblast growth factor. Mol Cell Biol 11:573–577

    PubMed  CAS  Google Scholar 

  9. Chaturvedi K, Sarkar DK (2004) Involvement of protein kinase C-dependent mitogen-activated protein kinase p44/42 signaling pathway for cross-talk between estradiol and transforming growth factor-beta3 in increasing basic fibroblast growth factor in folliculostellate cells. Endocrinology 145:706–715

    Article  PubMed  CAS  Google Scholar 

  10. Chaturvedi K, Sarkar DK (2005) Mediation of basic fibroblast growth factor-induced lactotropic cell proliferation by Src-Ras-mitogen-activated protein kinase p44/42 signaling. Endocrinology 146:1948–1955

    Article  PubMed  CAS  Google Scholar 

  11. Chen CH, Poucher SM, Lu J, Henry PD (2004) Fibroblast growth factor 2: from laboratory evidence to clinical application. Curr Vasc Pharmacol 2:33–43

    Article  PubMed  CAS  Google Scholar 

  12. Delrieu I (2000) The high molecular weight isoforms of basic fibroblast growth factor (FGF-2): an insight into an intracrine mechanism. FEBS Lett 468:6–10

    Article  PubMed  CAS  Google Scholar 

  13. Ezzat S (2001) The role of hormone, growth factors and their receptors in pituitary tumorigenesis. Brain Pathol 11:356–370

    Article  PubMed  CAS  Google Scholar 

  14. Florkiewicz RZ, Sommer A (1989) Human basic fibroblast growth factor gene encodes four polypeptides: three initiate translation from non-AUG codons. Proc Natl Acad Sci USA 86:3978–3981

    Article  PubMed  CAS  Google Scholar 

  15. Fukui S, Otani N, Nawashiro H, Yano N, Miyazaqwa T, Ohnuki A, Tsuzuki N, Katoh H, Ishihara S, Suzuki T, Shima K (2002) Nuclear accumulation of basic fibroblast growth factor as a predictor for the recurrence of pituitary adenomas. J Neurooncol 57:221–229

    Article  PubMed  Google Scholar 

  16. Fukui S, Otani N, Nawashiro H, Yano N, Miyazaqwa T, Ohnuki A, Tsuzuki N, Katoh H, Ishihara S, Suzuki T, Shima K (2003) Nuclear accumulation of basic fibroblast growth factor in human astrocytic tumors. Cancer 97:3061–3067

    Article  PubMed  CAS  Google Scholar 

  17. Garmy-Susini B, Delmas E, Gourdy P, Zhou M, Bossard C, Bugler B, Bayard F, Krust A, Prats AC, Doetschman T, Prats H, Arnal JF (2004) Role of fibroblast growth factor-2 isoforms in the effect of estradiol on endothelial cell migration and proliferation. Circ Res 94:1301–1309

    Article  PubMed  CAS  Google Scholar 

  18. Heaney A, Horwitz G, Wang Z, Singson R, Melmed S (1999) Early involvement of estrogen-induced pituitary tumour transforming gene and fibroblast growth factor expression in prolactinoma pathogenesis. Nat Med 5:1317–1321

    Article  PubMed  CAS  Google Scholar 

  19. Itoh J, Serizawa A, Kawai K, Ishii Y, Teramoto A, Osamura Yoshiyuki R (2003) Vascular networks and endothelial cells in rat experimental pituitary glands and in the human pituitary adenomas. Microsc Res Tech 60:231–235

    Article  PubMed  Google Scholar 

  20. Kang HB, Kim JS, Kwon HJ, Nam KH, Youn HS, Sok DE, Lee Y (2005) Basic fibroblast growth factor activates ERK and induces c-fos in human embryonic stem cell line MizhES1. Stem Cells Dev 14:395–401

    Article  PubMed  CAS  Google Scholar 

  21. Keresztes M, Boonstra J (1999) Importance of growth factors into the nucleus. J Cell Biol 145:421–424

    Article  PubMed  CAS  Google Scholar 

  22. López J, Fernández I, Palacios D, Castillo A, Tolón R, Aranda A, Karin M (2000) Differentiation of lactotrope precursor GHFT cells in response to fibroblast growth factor-2. J Biol Chem 275:21653–21660

    Article  Google Scholar 

  23. Madan AK, Kramer B (2005) Immunolocalization of fibroblast growth factor-2 (FGF-2) in the developing root and supporting structures of the murine tooth. J Mol Histol 36:171–178

    Article  PubMed  CAS  Google Scholar 

  24. Maher PA (1996) Nuclear translocation of fibroblast growth factor (FGF) receptors in response to FGF-2. J Cell Biol 134:529–536

    Article  PubMed  CAS  Google Scholar 

  25. Maldonado C, Aoki A (1986) Improvement of prolactin immuno-labeling in osmium-fixed acrylic-embedded pituitary gland. Basic Appl Histochem 30:301–305

    PubMed  CAS  Google Scholar 

  26. Marin F, Boya J (1995) Immunocytochemical localization of basic fibroblast growth factor in the human pituitary gland. Neuroendocrinology 62:523–529

    PubMed  CAS  Google Scholar 

  27. Melmed S (2003) Mechanisms for pituitary tumorigenesis: the plastic pituitary. J Clin Invest 112:1603–1618

    Article  PubMed  CAS  Google Scholar 

  28. Mignatti P, Morimoto T, Rifkin DB (1991) Basic fibroblast growth factor released by single, isolated cells stimulates their migration in an autocrine manner. Proc Natl Acad Sci USA 88:11007–11111

    Article  PubMed  CAS  Google Scholar 

  29. Mukdsi JH, De Paul AL, Munoz S, Aoki A, Torres AI (2004) Immunolocalization of Pit-1 in gonadotroph nuclei is indicative of the transdifferentiation of gonadotroph to lactotroph cells in prolactinomas induced by estrogen. Histochem Cell Biol 121:453–462

    Article  PubMed  CAS  Google Scholar 

  30. Mukdsi JH, De Paul AL, Gutiérrez S, Roth F, Aoki A, Torres AI (2006) Subcellular localisation of VEGF in different pituitary cells. Changes of its expression in estrogen induced prolactinomas. J Mol Histol 36:447–454

    Article  CAS  Google Scholar 

  31. Nickel W (2003) The mystery of nonclassical protein secretion. A current view on cargo proteins and potential export routes. Eur J Biochem 270:2109–2119

    Article  PubMed  CAS  Google Scholar 

  32. Okada-Ban M, Thiery JP, Jouanneau J (2000) Fibroblast growth factor-2. Int J Biochem Cell Biol 32:263–267

    Article  PubMed  CAS  Google Scholar 

  33. Oomizu S, Chaturvedi K, Sarkada DK (2004) Folliculostellate cells determine the susceptibility of lactotropes to estradiol’s mitogenic action. Endocrinology 145:1473–1480

    Article  PubMed  CAS  Google Scholar 

  34. Piroli G, Torres AI, Pietranera L, Grillo C, Ferrini M, Lux-Santos V, Aoki A, De Nicola A (2000) Sexual dimorphism in diethylstilbestrol-induced prolactin pituitary tumors in F344 rats. Neuroendocrinology 72:80–90

    Article  PubMed  CAS  Google Scholar 

  35. Quarto N, Fong KD, Longaker MT (2005) Gene profiling of cells expressing different FGF-2 forms. Gene 56:49–68

    Article  CAS  Google Scholar 

  36. Re RN (2003) The intracrine hypothesis and intracellular peptide hormone action. Bioessays 25:401–409

    Article  PubMed  CAS  Google Scholar 

  37. Re RN (2004) A proposal regarding the biology of memory: participation of intracrine peptide networks. Med Hypotheses 63:887–894

    Article  PubMed  CAS  Google Scholar 

  38. Renner U, Paez-Pereda M, Arzt E, Stalla GK (2004) Growth factors and cytokines: function and molecular regulation in pituitary adenomas. Front Horm Res 32:96–109

    PubMed  CAS  Google Scholar 

  39. Schechter JE (1992) Is cellular disruption the mechanism of release of basic fibroblast growth factor from anterior pituitary gonadotropes? Tissue Cell 24:791–802

    Article  PubMed  CAS  Google Scholar 

  40. Sugawara A, Yen PM, Darling DS, Chin W (1993) Characterization and tissue expression of multiple triiodothyronine receptor-auxiliary proteins and their relationship to the retinoid X-receptor. Endocrinology 133:965–971

    Article  PubMed  CAS  Google Scholar 

  41. Turner HE, Harris AL, Melmed S, Wass JA (2003) Angiogenesis in endocrine tumors. Endocr Rev 24:600–632

    Article  PubMed  CAS  Google Scholar 

  42. Yamada S, Takada K (2003) Angiogenesis in pituitary adenomas. Microsc Res Tech 60:236–243

    Article  PubMed  CAS  Google Scholar 

  43. Zhan X, Hu X, Friedman S, Maciag T (1992) Analysis of endogenous and exogenous nuclear translocation of fibroblast growth factor-1 in NIH 3T3 cells. Biochem Biophys Res Commun 188:982–991

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are especially grateful to Professor Dr. Sylvia L. Asa from the Department of Laboratory Medicine and Pathobiology, University of Toronto for her critical review of the manuscript. The technical assistance of Mrs Mercedes Guevara and Biochem. Félix D. Roth is gratefully acknowledged. Finally, we would like to thank native speaker Dr Paul Hobson for revising the English of the manuscript. This work was supported by grants from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and the Secretaría de Ciencia y Tecnología de la Universidad Nacional de Córdoba (SECyT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia I. Torres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukdsi, J.H., De Paul, A.L., Petiti, J.P. et al. Pattern of FGF-2 isoform expression correlated with its biological action in experimental prolactinomas. Acta Neuropathol 112, 491–501 (2006). https://doi.org/10.1007/s00401-006-0101-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-006-0101-9

Keywords

Navigation