Skip to main content

Advertisement

Log in

Perinecrotic glioma proliferation and metabolic profile within an intracerebral tumor xenograft

  • Regular Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Intracerebral C6 glioma xenografts spontaneously develop centrally located necrotic regions that are bordered by densely packed neoplastic cells. Proliferative and metabolic heterogeneity in these perinecrotic regions were assessed by bromodeoxyuridine (BrdU) incorporation, by immunocytological and by histochemical analyses. The borders of necrotic regions are comprised of glioma cells that express increased levels of the type 1 glucose transporter (GLUT-1) with rare cells having incorporated BrdU. By contrast, BrdU-positive glioma cells are located immediately adjacent to GLUT-1-positive cells bordering areas of necrosis. BrdU-positive glioma cells are also scattered throughout poorly vascularized, central regions of the tumor and are present at the highly vascularized tumor periphery. GLUT-1 expression increased considerably when C6 glioma cells were grown for 48 h under either the acidotic conditions of pH 6.8 or under hypoxic conditions. The perinecrotic GLUT-1-positive glioma cells in poorly vascularized, centrally located tumor regions demonstrated a 75% reduction in glycogen content and negligible glycogenolytic capacity, when compared with normal brain white matter. Cytochrome c oxidase (COX) and lactate dehydrogenase (LDH) maintained 50% enzymatic activity compared to controls, while succinate dehydrogenase (SDH) activity was 25% of control values. Based upon these findings, a metabolic model is proposed in which GLUT-1-positive perinecrotic cells are growth arrested and predominantly rely upon non-oxidative glycolysis. It is further postulated that BrdU-positive, GLUT-1-negative glioma cells within the poorly vascularized, central tumor region convert glucose-6-phosphate to nucleotide precursors for DNA replication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alvord EC Jr (1992) Is necrosis helpful in the grading of gliomas? Editorial opinion. J Neuropathol Exp Neurol 51:127–132

    PubMed  Google Scholar 

  2. Anstrom JA, Brown WR, Moody DM, Thore CR, Challa VR, Block SM (2002) Temporal expression pattern of cerebrovascular endothelial cell alkaline phosphatase during human gestation. J Neuropathol Exp Neurol 61:76–84

    PubMed  Google Scholar 

  3. Asano T, Katagiri H, Takata K, et al (1991) The role of N-glycosylation of glut1 for glucose transport activity. J Biol Chem 266:24632–24636

    CAS  Google Scholar 

  4. Bancroft JD, Hand NM (1987) Enzyme histochemistry. Oxford University Press, Oxford

  5. Barker FG 2nd, Davis RL, Chang SM, Prados MD (1996) Necrosis as a prognostic factor in glioblastoma multiforme. Cancer 77:1161–1166

    Article  PubMed  Google Scholar 

  6. Behrooz A, Ismail-Beigi F (1997) Dual control of Glut1 glucose transporter gene expression by hypoxia and by inhibition of oxidative phosphorylation. J Biol Chem 272:5555–5562

    Article  CAS  Google Scholar 

  7. Bell HS, Whittle IR, Walker M, Leaver HA, Wharton SB (2001) The development of necrosis and apoptosis in glioma: experimental findings using spheroid culture systems. Neuropathol Appl Neurobiol 27:291–304

    Article  CAS  PubMed  Google Scholar 

  8. Benda P, Lightbody J, Sato G, Levine L, Sweet W (1968) Differentiated rat glial cell strain in tissue culture. Science 161:370–371

    CAS  PubMed  Google Scholar 

  9. Bertoni-Freddari C, Fattoretti P, Casoli T, Di Stefano G, Solazzi M, Gracciotti N, Pompei P (2001) Mapping of mitochondrial metabolic competence by cytochrome oxidase and succinic dehydrogenase cytochemistry. J Histochem Cytochem 49:1191–1192

    CAS  PubMed  Google Scholar 

  10. Bouzier AK, Voisin P, Goodwin R, Canioni P, Merle M (1998) Glucose and lactate metabolism in C6 glioma cells: evidence for the preferential utilization of lactate for cell oxidative metabolism. Dev Neurosci 20:331–338

    Article  CAS  Google Scholar 

  11. Bouzier-Sore AK, Canioni P, Merle M (2001) Effect of exogenous lactate on rat glioma metabolism. J Neurosci Res 65:543–548

    Article  CAS  PubMed  Google Scholar 

  12. Bruckner G, Biesold D (1981) Histochemistry of glycogen deposition in perinatal rat brain: Importance of radial glial cells. J Neurocytol 10:749–757

    CAS  PubMed  Google Scholar 

  13. Chandel NS (2002) Detection of oxygen-sensing properties of mitochondria. Methods Enzymol 352:31–40

    CAS  Google Scholar 

  14. Chayen J, Bitensky L (1991) Practical histochemistry, 2nd edn. Wiley, New York

  15. Dang CV, Semenza GL (1999) Oncogenic alterations of metabolism. Trends Biochem Sci 24:68–72

    CAS  PubMed  Google Scholar 

  16. Daumas-Duport C, Scheithauer B, O’Fallon J, Kelly P (1988) Grading of astrocytomas. A simple and reproducible method. Cancer 62:2152–2165

    CAS  PubMed  Google Scholar 

  17. Duelli R, Maurer MH, Staudt R, Sokoloff L, Kuschinsky W (2001) Correlation between local glucose transporter densities and local 3-o-methylglucose transport in rat brain. Neurosci Lett 310:101–104

    CAS  PubMed  Google Scholar 

  18. Eng C, Kiuru M, Fernandez MJ, Aaltonen LA (2003) A role for mitochondrial enzymes in inherited neoplasia and beyond. Nat Rev Cancer 3:193–202

    Article  CAS  Google Scholar 

  19. Fonta C, Imbert M (2002) Vascularization in the primate visual cortex during development. Cereb Cortex 12:199–211

    Article  PubMed  Google Scholar 

  20. Garcia-Martin ML, Herigault G, Remy C, Farion R, Ballesteros P, Coles JA, Cerdan S, Ziegler A (2001) Mapping extracellular pH in rat brain gliomas in vivo by 1 h magnetic resonance spectroscopic imaging: comparison with maps of metabolites. Cancer Res 61:6524–6531

    CAS  Google Scholar 

  21. Geer CP, Grossman SA (1997) Interstitial fluid flow along white matter tracts: a potentially important mechanism for the dissemination of primary brain tumors. J Neurooncol 32:193–201

    Article  CAS  Google Scholar 

  22. Gerhart DZ, LeVasseur RJ, Broderius MA, Drewes LR (1989) Glucose transporter localization in brain using light and electron immunocytochemistry. J Neurosci Res 22:464–472

    CAS  Google Scholar 

  23. Gonzalez-Lima F, Garrosa M (1991) Quantitative histochemistry of cytochrome oxidase in rat brain. Neurosci Lett 123:251–253

    Article  CAS  PubMed  Google Scholar 

  24. Gorin F, Ignacio P, Gelinas R, Carlsen R (1989) Abnormal expression of glycogen phosphorylase genes in regenerated muscle. Am J Physiol 257:C495–503

    CAS  PubMed  Google Scholar 

  25. Grobben B, De Deyn PP, Slegers H (2002) Rat C6 glioma as experimental model system for the study of glioblastoma growth and invasion. Cell Tissue Res 310:257–270

    Article  CAS  Google Scholar 

  26. Hevner RF, Liu S, Wong-Riley MT (1995) A metabolic map of cytochrome oxidase in the rat brain: histochemical, densitometric and biochemical studies. Neuroscience 65:313–342

    Article  CAS  PubMed  Google Scholar 

  27. Ikezaki K, Black KL, Conklin SG, Becker DP (1992) Histochemical evaluation of energy metabolism in rat glioma. Neurol Res 14:289–293

    CAS  PubMed  Google Scholar 

  28. Kimura S, Yoshino A, Katayama Y, Watanabe T, Fukushima T (2002) Growth control of C6 glioma in vivo by nerve growth factor. J Neurooncol 59:199–205

    Article  Google Scholar 

  29. Kleihues P, Louis DN, Scheithauer BW, Rorke LB, Reifenberger G, Burger PC, Cavenee WK (2002) The who classification of tumors of the nervous system. J Neuropathol Exp Neurol 61:215–225; discussion 226–219

    PubMed  Google Scholar 

  30. Konkle AT, Wilson P, Bielajew C (1999) Histochemical mapping of the substrate for brain-stimulation reward with glycogen phosphorylase. J Neurosci Methods 93:111–119

    Article  CAS  Google Scholar 

  31. Lee LG (1968) Manual of histologic staining methods of the armed forces institute of pathology. McGraw-Hill, New York

  32. Lowry OH, Berger SJ, Carter JG, Chi MM, Manchester JK, Knor J, Pusateri ME (1983) Diversity of metabolic patterns in human brain tumors: enzymes of energy metabolism and related metabolites and cofactors. J Neurochem 41:994–1010

    CAS  PubMed  Google Scholar 

  33. Lund EL, Spang-Thomsen M, Skovgaard-Poulsen H, Kristjansen PE (1998) Tumor angiogenesis—a new therapeutic target in gliomas. Acta Neurol Scand 97:52–62

    CAS  PubMed  Google Scholar 

  34. Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavenee WK, DePinho RA (2001) Malignant glioma: genetics and biology of a grave matter. Genes Dev 15:1311–1333

    Article  CAS  PubMed  Google Scholar 

  35. Masumi A, Akamatsu Y, Kitagawa T (1993) Modulation of the synthesis and glycosylation of the glucose transporter protein by transforming growth factor-beta 1 in swiss 3t3 fibroblasts. Biochim Biophys Acta 1145:227–234

    Article  CAS  Google Scholar 

  36. McCarthy BJ, Surawicz T, Bruner JM, Kruchko C, Davis F (2002) Consensus conference on brain tumor definition for registration. Neurooncology 4:134–145

    Google Scholar 

  37. Nagamatsu S, Nakamichi Y, Inoue N, Inoue M, Nishino H, Sawa H (1996) Rat C6 glioma cell growth is related to glucose transport and metabolism. Biochem J 319:477–482

    CAS  PubMed  Google Scholar 

  38. Peoch M, Le Duc G, Trayaud A, Farion R, Le Bas JF, Pasquier B, Remy C (1999) Quantification and distribution of neovascularization following microinjection of c6 glioma cells in rat brain. Anticancer Res 19:3025–3030

    CAS  PubMed  Google Scholar 

  39. Peoch M, Farion R, Hiou A, Le Bas JF, Pasquier B, Remy C (2002) Immunohistochemical study of vegf, angiopoietin 2 and their receptors in the neovascularization following microinjection of C6 glioma cells into rat brain. Anticancer Res 22:2147–2151

    CAS  PubMed  Google Scholar 

  40. Plate KH, Breier G, Millauer B, Ullrich A, Risau W (1993) Up-regulation of vascular endothelial growth factor and its cognate receptors in a rat glioma model of tumor angiogenesis. Cancer Res 53:5822–5827

    CAS  PubMed  Google Scholar 

  41. Reichert M, Steinbach JP, Supra P, Weller M (2002) Modulation of growth and radiochemosensitivity of human malignant glioma cells by acidosis. Cancer 95:1113–1119

    Article  CAS  PubMed  Google Scholar 

  42. Reilly JF, Bair L, Kumari V (1997) Heparan sulfate modifies the effects of basic fibroblast growth factor on glial reactivity. Brain Res 759:277–284

    Article  CAS  Google Scholar 

  43. Samih N, Hovsepian S, Notel F, Prorok M, Zattara-Cannoni H, Mathieu S, Lombardo D, Fayet G, El-Battari A (2003) The impact of N- and O-glycosylation on the functions of glut-1 transporter in human thyroid anaplastic cells. Biochim Biophys Acta 1621:92–101

    Article  CAS  PubMed  Google Scholar 

  44. Schnier JB, Nishi K, Goodrich DW, Bradbury EM (1996) G1 arrest and down-regulation of cyclin e/cyclin-dependent kinase 2 by the protein kinase inhibitor staurosporine are dependent on the retinoblastoma protein in the bladder carcinoma cell line 5637. Proc Natl Acad Sci USA 93:5941–5946

    Article  CAS  Google Scholar 

  45. Tamiya T, Kinoshita K, Ono Y, Matsumoto K, Furuta T, Ohmoto T (2000) Proton magnetic resonance spectroscopy reflects cellular proliferative activity in astrocytomas. Neuroradiology 42:333–338

    CAS  PubMed  Google Scholar 

  46. Terpstra M, Gruetter R, High WB, Mescher M, DelaBarre L, Merkle H, Garwood M (1998) Lactate turnover in rat glioma measured by in vivo nuclear magnetic resonance spectroscopy. Cancer Res 58:5083–5088

    CAS  PubMed  Google Scholar 

  47. Tsukamoto H, Hamada Y, Wu D, Boado RJ, Pardridge WM (1998) Glut1 glucose transporter: differential gene transcription and mRNA binding to cytosolic and polysome proteins in brain and peripheral tissues. Brain Res Mol Brain Res 58:170–177

    Article  CAS  Google Scholar 

  48. Vaupel P, Thews O, Hoeckel M (2001) Treatment resistance of solid tumors: role of hypoxia and anemia. Med Oncol 18:243–259

    Article  CAS  PubMed  Google Scholar 

  49. Wike-Hooley JL, Haveman J, Reinhold HS (1984) The relevance of tumour pH to the treatment of malignant disease. Radiother Oncol 2:343–366

    CAS  PubMed  Google Scholar 

  50. Woolf CJ, Chong MS, Rashdi TA (1985) Mapping increased glycogen phosphorylase activity in dorsal root ganglia and in the spinal cord following peripheral stimuli. J Comp Neurol 234:60–76

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the National Institutes of Health (NS40489, NIH NS29995, HL31179, GM 58688), and the University of California Cancer Research Coordinating Committee. We gratefully acknowledge the Keck Foundation for their support of the confocal microscopy facility at the UCD Center for Neuroscience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredric Gorin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorin, F., Harley, W., Schnier, J. et al. Perinecrotic glioma proliferation and metabolic profile within an intracerebral tumor xenograft. Acta Neuropathol 107, 235–244 (2004). https://doi.org/10.1007/s00401-003-0803-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-003-0803-1

Keywords

Navigation