Skip to main content
Log in

Comparison of the elongational behavior of various polyolefins in uniaxial and equibiaxial flows

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

For processing operations with a pronounced elongational component, it was found that the uniformity of extruded items is improved by the presence of strain hardening usually measured in uniaxial elongation. Many processing operations such as foaming, film blowing, and blow molding are dominated by biaxial deformations, however, and therefore, the question arises how strain hardening in uniaxial and biaxial deformation compares. Besides a linear and long-chain branched PP, one classical LDPE, an HDPE pipe extrusion grade with a bimodal MMD, and a LCB-mPE were also characterized. For the measurements in uniaxial elongation the Münstedt tensile rheometer (MTR) and the ARES-EVF were used, while the lubricated flow method was applied for equibiaxial deformation. It was found that the strain hardening in uniaxial elongation is more pronounced. The dependence of strain hardening on strain rate is qualitatively the same in both modes. In the range of strain rates, the chosen long-chain branched LDPE and PP exhibit a strain hardening, which is approximately independent of the elongational rates applied, whereas for the HDPE it becomes smaller with increasing rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The opposite effect is called strain softening and is usually observed in multi-phase melts such as immiscible blends or filled systems (especially in fiber filled materials).

  2. It was made from one part of the stabilized (0.5 wt% Irgafos 38, 0.5 wt% Irganox 38) sample D5 (see Piel et al. 2006 for synthesis conditions; highly long-chain branched) and seven parts of the commercial sample C3 (Stadler et al. 2006b; linear), which is already sufficiently stable. The blending time was 15 min. Data of this sample were previously published as E7 by Stadler et al. (2007a, b).

  3. The kinematic viscosity of 100,000 cSt (at 25 °C) is equivalent to about 102 Pa s.

  4. For the LDPE, Schwetz et al. (2002) found a zero shear-rate viscosity η 0 of 866,000 Pa s at 150 °C, while for the two other PEs no value for this quantity could be obtained as the maximum relaxation times are too long to reach the terminal regime within the time of thermal stability. These samples are found to lie distinctly above the η 0M w correlation for linear HDPE (Stadler et al. 2006b), which is typical of a slightly branched PE (Shroff and Mavridis 1999; Wood-Adams 2001; Gabriel et al. 2002; Gabriel and Münstedt 2002; Malmberg et al. 2002; Münstedt et al. 2003; Piel et al. 2006; Stadler et al. 2006a, c).

  5. This different behavior can be understood when considering that the stretching of the molecules is different in uniaxial and equibiaxial elongation according to the MSF-theory (Wagner et al. 2003).

References

  • Auhl D, Stange J, Münstedt H, Krause B, Voigt D, Lederer A, Lappan U, Lunkwitz K (2004) Long-chain branched polypropylenes by electron beam irradiation and their rheological properties. Macromolecules 37(25):9465–9472

    Article  CAS  Google Scholar 

  • Auhl D, Kaschta J, Münstedt H, Kaspar H, Hintzer K (2006) Molecular characterization of semi-fluorinated copolymers with a controlled amount of long-chain branching. Macromolecules 39(6):2316–2324

    Article  CAS  Google Scholar 

  • Bach A, Rasmussen HK, Longin P-Y, Hassager O (2002) Growth of non-axisymmetric disturbances of the free surface in the filament stretching rheometer: experiments and simulation. J Non-Newton Fluid Mech 108(1–3):163–186

    Article  CAS  Google Scholar 

  • Bastian H (2001) Non-linear viscoelasticity of linear and long-chain-branched polymer melts in shear and extensional flows. University Berlin, PhD Thesis

  • Beer F, Capaccio G, Rose LJ (1999) High molecular weight tail and long-chain branching in SRM 1476 polyethylene. J Appl Polym Sci 73(14):2807–2812

    Article  CAS  Google Scholar 

  • Chatraei S, Macosko CW, Winter HH (1981) Lubricated squeezing flow: a new biaxial extensional rheometer. J Rheol 25(4):433–443

    Article  CAS  Google Scholar 

  • Gabriel C, Münstedt H (2002) Influence of long-chain branches in polyethylenes on linear viscoelastic flow properties in shear. Rheol Acta 41(3):232–244

    Article  CAS  Google Scholar 

  • Gabriel C, Münstedt H (2003) Strain hardening of various polyolefins in uniaxial elongational flow. J Rheol 47(3):619–630

    Article  CAS  Google Scholar 

  • Gabriel C, Kokko E, Löfgren B, Seppälä J, Münstedt H (2002) Analytical and rheological characterization of long-chain branched metallocene-catalyzed ethylene homopolymers. Polymer 43(24):6383–6390

    Article  CAS  Google Scholar 

  • Hachmann P, Meissner J (2003) Rheometer for equibiaxial and planar elongations of polymer melts. J Rheol 47(4):989–1010

    Article  CAS  Google Scholar 

  • Hattori T, Takigawa T, Masuda T (1992) Uniaxial and biaxial elongational flow of low-density polyethylene/polystyrene blends. Nihon Reoroji Gakkaishi 20(3):141–145

    CAS  Google Scholar 

  • Hsu TC, Harrison IR (1994) Experimental factors in measurement of elongational viscosity using lubricated squeezing. Annu Technol Confer Soc Plast Eng 52nd 2:1816–1818

    Google Scholar 

  • Kompani M, Venerus DC (2000) Equibiaxial extensional flow of polymer melts via lubricated squeezing flow. I. Experimental analysis. Rheol Acta 39(5):444–451

    Article  CAS  Google Scholar 

  • Krause B, Voigt D, Lederer A, Auhl D, Münstedt H (2004) Determination of low amounts of long-chain branches in polypropylene using a combination of chromatographic and rheological methods. J Chromatogr 1056(1–2):217–222

    Article  CAS  Google Scholar 

  • Kurzbeck S, Oster F, Münstedt H, Nguyen TQ, Gensler R (1999) Rheological properties of two different polypropylenes with different molecular structures. J Rheol 43(2):359–374

    Article  CAS  Google Scholar 

  • Laun HM, Münstedt H (1978) Elongational behaviour of a low density polyethylene melt I. Strain rate and stress dependence of viscosity and recoverable strain in the steady-state. Comparison with shear data. Influence of interfacial tension. Rheol Acta 17:415–425

    Article  CAS  Google Scholar 

  • Linster JJ, Meissner J (1986) Melt elongation and structure of linear polyethylene (HDPE). Polym Bull (Berlin, Germany) 16(2–3):187–194

    Article  CAS  Google Scholar 

  • Malmberg A, Gabriel C, Steffl T, Münstedt H, Löfgren B (2002) Long-chain branching in metallocene-catalyzed polyethylenes investigated by low oscillatory shear and uniaxial extensional rheometry. Macromolecules 35:1038–1048

    Article  CAS  Google Scholar 

  • Meissner J (1969) Rheometer for the study of mechanical properties of deformation of plastic melts under definite tensile stress. Rheol Acta 8(1):78–88

    Article  CAS  Google Scholar 

  • Meissner J, Raible T, Stephenson SE (1981) Rotary clamp in uniaxial and biaxial extensional rheometry of polymer melts. J Rheol 25(1):1–28

    Article  CAS  Google Scholar 

  • Minegishi A, Nishioka A, Takahashi T, Masubuchi Y, Takimoto J-I, Koyama K (2001) Unaxial elonational viscosity of PS/a small amount of UHMW-PS blends. J Rheol 40:329–338

    Article  CAS  Google Scholar 

  • Mitsoulis E, Schwetz M, Münstedt H (2003) Entry flow of LDPE melts in a planar contraction. Polymer 111:41–61

    CAS  Google Scholar 

  • Münstedt H (1979a) New universal extensional rheometer for polymer melts. Measurements on a polystyrene sample. J Rheol 23(4):421–436

    Article  Google Scholar 

  • Münstedt H (1979b) Elongational behavior of a low density polyethylene melt II. Transient behavior in constant stretching rate and tensile creep experiments. Comparison with shear data. Temperature dependence of the elongational properties. Rheol Acta 18:492–504

    Article  Google Scholar 

  • Münstedt H (1980) Dependence of the elongational behavior of polystyrene melts on molecular weight and molecular weight distribution. J Rheol 24(6):847–867

    Article  Google Scholar 

  • Münstedt H, Auhl D (2005) Rheological measuring techniques and their relevance for the molecular characterization of polymers. J Non-Newton Fluid Mech 128(1):62–69

    Article  CAS  Google Scholar 

  • Münstedt H, Kurzbeck S (1998) Comparison of creep and stressing experiments on polyolefin melts in elongation. Progress and Trends in Rheology V. Proceedings of the 5th European Rheology Conference, Portoroz, Slovenia, pp 487–488 (Sept 6–11)

  • Münstedt H, Gabriel C, Auhl D (2003) Long-chain branching and elongational properties of polyethylene and polypropylene melts. Abstr Papers Am Chem Soc 226:U382–U382

    Google Scholar 

  • Münstedt H, Steffl T, Malmberg A (2005) Correlation between rheological behaviour in uniaxial elongation and film blowing properties of various polyethylenes. Rheol Acta 45(1):14–22

    Article  CAS  Google Scholar 

  • Münstedt H, Kurzbeck S, Stange J (2006) The importance of elongational properties of polymer melts for film blowing and thermoforming. Polym Eng Sci 46(9):1190–1195

    Article  CAS  Google Scholar 

  • Nishioka A, Takagi Y, Takahashi T, Masubuchi Y, Takimoto J, Koyama K (1998a) Measurement of biaxial elongational viscosity of polymer melts using lubricated squeezing flow method. J Soc Materials Science Japan 47(12):1296–1300

    CAS  Google Scholar 

  • Nishioka A, Takahashi T, Masubuchi Y, Takimoto J, Koyama K (1998b) Stress relaxation of polymer melts in biaxial and planar elongations. Mater Sci Res Int 4(2):121–123

    CAS  Google Scholar 

  • Nishioka A, Takahashi T, Masubuchi Y, Takimoto J-I, Koyama K (2000) Description of uniaxial, biaxial, and planar elongational viscosities of polystyrene melt by the K-BKZ model. J Non-Newton Fluid Mech 89(3):287–301

    Article  CAS  Google Scholar 

  • Nishioka A, Masubuchi Y, Takimoto J-I, Koyama K (2001) Measurement of planar elongational viscosity and planar stress relaxation of polymer melts using lubricated squeezing flow method. Seikei Kako 13(8):563–570

    Article  Google Scholar 

  • Piel C, Stadler FJ, Kaschta J, Rulhoff S, Münstedt H, Kaminsky W (2006) Structure-property relationships of linear and long-chain branched metallocene high-density polyethylenes and SEC-MALLS. Macromol Chem Phys 207(1):26–38

    Article  CAS  Google Scholar 

  • Schulze JS, Lodge TP, Macosko CW, Hepperle J, Münstedt H, Bastian H, Ferri D, Groves DJ, Kim YH, Lyon M, Schweizer T, Virkler T, Wassner E, Zoetelief W (2001) A comparison of extensional viscosity measurements from various RME rheometers. Rheol Acta 40(5):457–466

    Article  CAS  Google Scholar 

  • Schwetz M, Münstedt H, Heindl M, Merten A (2002) Investigations on the temperature dependence of the die entrance flow of various long-chain branched polyethylenes using laser-doppler velocimetry. J Rheol 46(4):797–815

    Article  CAS  Google Scholar 

  • Sentmanat ML (2004) Miniature universal testing platform: from extensional melt rheology to solid-state deformation behavior. Rheol Acta 43(6):657–669

    Article  CAS  Google Scholar 

  • Shroff R, Mavridis H (1999) Long-chain-branching index for essentially linear polyethylenes. Macromolecules 32(25):8454–8464

    Article  CAS  Google Scholar 

  • Soskey PR, Winter HH (1985) Equibiaxial extension of two polymer melts: polystyrene and low-density polyethylene. J Rheol 29(5):493–517

    Article  CAS  Google Scholar 

  • Stadler FJ, Piel C, Kaminsky W, Münstedt H (2006a) Rheological characterization of long-chain branched polyethylenes and comparison with classical analytical methods. Macromol Symp 236(1):209–218

    Article  CAS  Google Scholar 

  • Stadler FJ, Piel C, Kaschta J, Rulhoff S, Kaminsky W, Münstedt H (2006b) Dependence of the zero shear-rate viscosity and the viscosity function of linear high density polyethylenes on the mass-average molar mass and polydispersity. Rheol Acta 45(5):755–764

    Article  CAS  Google Scholar 

  • Stadler FJ, Piel C, Klimke K, Kaschta J, Parkinson M, Wilhelm M, Kaminsky W, Münstedt H (2006c) Influence of type and content of very long comonomers on long-chain branching of ethene-/α-olefin copolymers. Macromolecules 39(4):1474–1482

    Article  CAS  Google Scholar 

  • Stadler FJ, Takahashi T, Münstedt H, Yonetake K (2007a) Crystallite dimensions—characterization of ethene-/α-olefin copolymers with various comonomers and comonomer contents measured by small- and wide angle X-ray scattering. Polymer (in press)

  • Stadler FJ, Takahashi T, Münstedt H, Yonetake K (2007b) Lattice sizes and spacing between amorphous chains—crystallite dimensions—characterization of ethene-/α-olefin copolymers with various comonomers and comonomer contents measured by wide angle X-ray scattering. Polymer (in press)

  • Stange J, Münstedt H (2006) Effect of long-chain branching on the foaming of polypropylene with azodicarbonamide. J Cell Plast 42:445–467

    Article  CAS  Google Scholar 

  • Stange J, Uhl C, Münstedt H (2005) Rheological behavior of blends from a linear and a long-chain branched polypropylene. J Rheol 49(5):1059–1079

    Article  CAS  Google Scholar 

  • Sun T, Chance RR, Graessley WW, Lohse DJ (2004) A study of the separation principle in size exclusion chromatography. Macromolecules 37(11):4304–4312

    Article  CAS  Google Scholar 

  • Wagner MH (1978) A constitutive analysis of uniaxial elongational flow data of a low-density polyethylene melt. J Non-Newton Fluid Mech 4(1–2):39–55

    Article  CAS  Google Scholar 

  • Wagner MH, Bastian H, Hachmann P, Meissner J, Kurzbeck S, Münstedt H, Langouche F (2000) The strain hardening behaviour of linear and long-chain-branched polyolefin melts in extensional flows. Rheol Acta 39:97–109

    Article  CAS  Google Scholar 

  • Wagner MH, Yamaguchi M, Takahashi M (2003) Quantitative assessment of strain hardening of low-density polyethylene melts by the molecular stress function model. J Rheol 47(3):779–793

    Article  CAS  Google Scholar 

  • Wagner MH, Kheirandish S, Koyama K, Nishioka A, Minegishi A, Takahashi T (2005) Modeling strain hardening of polydisperse polystyrene melts by molecular stress function theory. Rheol Acta 44(3):235–243

    Article  CAS  Google Scholar 

  • Wood-Adams PM (2001) The effect of long chain branches on the shear flow behavior of polyethylene. J Rheol 45(1):203–210

    Article  CAS  Google Scholar 

  • Zimm BHM, Stockmayer WH (1949) The dimensions of molecules containing branching and rings. J Chem Phys 17(12):1301–1314

    Article  CAS  Google Scholar 

  • Zülle B, Linster JJ, Meissner J, Hürlimann HP (1987) Deformation hardening and thinning in both elongation and shear of a low-density polyethylene melt. J Rheol 31(7):583–598

    Article  Google Scholar 

Download references

Acknowledgement

F. Stadler would like to thank the Bavarian Research Foundation (BFS), which sponsored his stay at the Yamagata University, and the German Research Foundation (DFG) for the general financial support of his research on long-chain branched polyethylenes. The contributions of Mr. Takahiro Kinumura (Yamagata University) for the help with the equibiaxial measurements and Dr. J. Kaschta and Mrs. I. Herzer (University Erlangen) for the SEC-MALLS are also gratefully acknowledged. We would also like to thank Prof. J. Takimoto (Yamagata University) and Mr. D. Möller (University Erlangen) for discussions. Additional thanks go to Prof. Dr. W. Kaminsky and Dr. C. Piel (University Hamburg) for providing the high molecular blend partner of the LCB-mPE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Münstedt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stadler, F.J., Nishioka, A., Stange, J. et al. Comparison of the elongational behavior of various polyolefins in uniaxial and equibiaxial flows. Rheol Acta 46, 1003–1012 (2007). https://doi.org/10.1007/s00397-007-0190-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-007-0190-y

Keywords

Navigation