Skip to main content
Log in

Linear viscoelastic master curves of neat and laponite-filled poly(ethylene oxide)–water solutions

  • Original contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Aqueous solutions composed of dispersed nanoparticles and entangled polymers are shown to exhibit common viscoelasticity over a range of particle and polymer concentrations. Time–temperature superposition and time–concentration superposition are applied to generate rheological master curves for neat and laponite-filled aqueous solutions of poly(ethylene oxide). The shift factors were correlated in terms of temperature and concentration and are found to differ from previous reports for ideal polymer solutions, which can be rationalized with a molecular interpretation of the structure of the laponite–polymer solutions. Laponite addition to the concentrated polymer solution is observed to increase the relaxation time but decrease the elastic modulus, which is a consequence of polymer adsorption and bridging. The addition of small amounts of laponite to stable PEO–water solutions also leads to ageing on the time scale of days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

PEO:

Poly(ethylene oxide)

PW:

PEO–water solution

PWL:

PEO–water–laponite mixture

TTSP:

Time–temperature superposition

TCSP:

Time–concentration superposition

P :

Weight percent of PEO in PWL mixture

W :

Weight percent of water in PWL mixture

L :

Weight percent of laponite in PWL mixture

c :

Weight percent of PEO in aqueous solution

η:

Viscosity (Pa s)

\({\mathop \gamma \limits^\cdot }\) :

Shear rate (s−1)

ρ:

Density (g/cm3)

ω:

Angular frequency(rad/s)

G' :

Storage modulus (Pa)

G'' :

Loss modulus (Pa)

a T :

Horizontal time-temperature shift factor

b T :

Vertical time-temperature shift factor

a c :

Horizontal time-concentration shift factor

b c :

Vertical time-concentration shift factor

T :

Temperature

g i :

Relaxation strength (Pa)

λ i :

Relaxation time(s)

s :

Specific surface area of laponite provided for PEO adsorption (m2/mg PEO)

Subscripts—g :

Glass transistion

ref :

Reference

0 :

Zero–shear

1 and 2 :

Level of TCSP in case of PWL mixtures

References

  • Aranda P, Mosqueda Y, Perez-Cappe E, Ruiz-Hitzky, E (2003) Electrical characterization of poly(ethylene oxide)–clay nanocomposites prepared by microwave irradiation. J Polym Sci, Part B, Polym Phys 41(24):3249–3263

    Article  Google Scholar 

  • Baumgärtel M, Willenbacher N (1996) The relaxation of concentrated polymer solutions. Rheol Acta 35(2):168–185

    Article  Google Scholar 

  • Brandup J, Immergut EH, and Grulke EA (eds) (1999) Polymer Handbook, 4th edn. Wiley, New York

    Google Scholar 

  • Casper CL, Stephens JS, Tassi NG, Chase DB, Rabolt JF (2004) Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process. Macromolecules 37(2):573–578

    Article  Google Scholar 

  • Devanand K, Selser JC (1991) Asymptotic-behavior and long-range interactions in aqueous-solutions of poly(ethylene oxide). Macromolecules 24(22):5943–5947

    Article  Google Scholar 

  • Dijkstra M, Hansen JP, Madden PA (1995) Gelation of a clay colloid suspension. Phys Rev Lett 75(11):2236–2239

    Article  PubMed  ADS  Google Scholar 

  • Doeff MM, Reed JS (1998) Li ion conductors based on laponite/poly(ethylene oxide) composites. Solid State Ionics 115:109–115

    Article  Google Scholar 

  • Drew C, Wang X, Samuelson LA, Samuelson JK (2003) The effect of viscosity and filler on electrospun fiber morphology. J Macromol Sci, Part A 40(12):1415–1422

    Article  Google Scholar 

  • Feller JF, Bruzaud S, Grohens Y (2004) Influence of clay nanofiller on electrical and rheological properties of conductive polymer composite. Mater Lett 58(5):739–745

    Article  Google Scholar 

  • Ferry JD (1980) Viscoelastic properties of polymers. 3rd edn. Wiley, New York

    Google Scholar 

  • Fong H, Chun I, Reneker DH (1999) Beaded nanofibers formed during electrospinning. Polymer 40(16):4585–4592

    Article  Google Scholar 

  • Greenblatt GD, Hughes L, Whitman DW (2004) Polymer–clay nanocomposite for extended release of active ingredient. European Patent Applications, EP 1470823

  • Hammouda B, Ho D, Kline S (2002) SANS from poly(ethylene oxide)/water systems. Macromolecules 35(22):8578–8585

    Article  Google Scholar 

  • Hammouda B, Ho DL, Kline S (2004) Insight into clustering in poly(ethylene oxide) solutions. Macromolecules 37(18):6932–6937

    Article  Google Scholar 

  • Hancock BC, Zografi G (1994) The relationship between the glass-transition temperature and the water-content of amorphous pharmaceutical solids. Pharm Res 11(4):471–477

    Article  PubMed  Google Scholar 

  • Ho DL, Hammouda B, Kline SR (2003) Clustering of poly(ethylene oxide) in water revisited. J Polym Sci, Part B, Polym Phys 41(1):135–138

    Article  Google Scholar 

  • Huang Z-M, Zhang Y-Z, Kotaki M (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253

    Article  Google Scholar 

  • Jayaraman K, Kotaki M, Zhang YZ, Mo XM, Ramakrishna S (2004) Recent advances in polymer nanofibers. J Nanosci Nanotechnol 4(1–2):52–65

    PubMed  Google Scholar 

  • Kjellander R, Florin E (1981) Water-structure and changes in thermal-stability of the system poly(ethylene oxide)–water. J Chem Soc, Faraday Trans I 77:2053–2077

    Article  Google Scholar 

  • Krikorian V, Casper C, Rabolt J, Pochan D (2004) Electrospinning of nanocomposite fibers based on poly(l-lactic acid) and organoclays. Polym Mater Sci Eng 90(51)

    Google Scholar 

  • Lal J, Auvray L (2000) Interaction of polymer with clays. J Appl Crystallogr 3(3, Pt. 1):673–676

    Article  Google Scholar 

  • Lal J, Auvray L (2001) Interaction of polymer with discotic clay particles. Mol Crystals Liq Crystals 356:503–515

    Article  Google Scholar 

  • Mackay ME, Dao TT, Tuteja A, Ho DL, Van Horn B, Kim HC, Hawker CJ (2003) Nanoscale effects leading to non-Einstein-like decrease in viscosity. Nat Mater 2(11):762–766

    Article  PubMed  ADS  Google Scholar 

  • Majumdar DB, Thomas N, Schwark, Dwight W (2003) Clay–polymer nanocomposite coatings for imaging application. Appl Clay Sci 23(5–6):265–273

    Article  Google Scholar 

  • McKee MG, Wilkes GL, Colby RH, Long TE (2004) Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters. Macromolecules 37(5):1760–1767

    Article  Google Scholar 

  • Megelski S, Stephens JS, Chase DB, Rabolt JF (2002) Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 35(22):8456–8466

    Article  Google Scholar 

  • Mongondry P, Nicolai T, Tassin JF (2004) Influence of pyrophosphate or polyethylene oxide on the aggregation and gelation of aqueous laponite dispersions. J Colloid Interface Sci 275(1):191–196

    Article  PubMed  Google Scholar 

  • Nelson A, Cosgrove T (2004) A small-angle neutron scattering study of adsorbed poly(ethylene oxide) on laponite. Langmuir 20(6):2298–2304

    Article  PubMed  Google Scholar 

  • Pozzo DC, Walker LM (2004) Reversible shear gelation of polymer–clay dispersions. Colloids Surf, A Physicochem Eng Asp 240(1–3):187–198

    Article  Google Scholar 

  • Sardinha H, Bhatia SR (2002a). Controlling gel formation in clay dispersions via water-soluble polymer: viscoelasticity and kinetics of gel formation. Submitted to RheoFuture Thermo Haake Young Scientists Award 2002

  • Sardinha H, Bhatia SR (2002b) Kinetics of gel formation in polymer–clay dispersions. Abstracts of Papers of the American Chemical Society 224:U526–U526

    Google Scholar 

  • Schausberger A, Ahrer IV (1995) On the time–concentration superposition of the linear viscoelastic properties of plasticized polystyrene melts using the free-volume concept. Macromol Chem Phys 196(7):2161–2172

    Article  Google Scholar 

  • Schmidt G, Nakatani AI, Butler PD, Karim A, Han CC (2000) Shear orientation of viscoelastic polymer–clay solutions probed by flow birefringence and SANS. Macromolecules 33(20):7219–7222

    Article  Google Scholar 

  • Schmidt G, Nakatani AI, Han CC (2002) Rheology and flow-birefringence from viscoelastic polymer–clay solutions. Rheol Acta 41(1–2):45–54

    Article  Google Scholar 

  • Sengupta AK, Spindler R, Darlington JW, Amcol International Corporation U (2002) Multifunctional particulate additive for personal care and cosmetic compositions. PCT Appl, WO 2002062310

  • Smith DN, Goodman H, Buse WR, ECC International Ltd. U (1989) Thixotropic composition containing smectite clays for personal care products. EP 301065

  • Theng BKG (1970) Interactions of clay minerals with organic polymers—some practical applications. Clays Clay Miner 18(6):357

    Article  Google Scholar 

  • Trappe V, Weitz DA (2000) Scaling of the viscoelasticity of weakly attractive particles. Phys Rev Lett 85(2):449–452

    Article  PubMed  ADS  Google Scholar 

  • van Olphen H (1977) An introduction to clay colloid chemistry. Wiley, New York

    Google Scholar 

  • Welty JR, Wicks CE, Wilson RE (1984) Fundamentals of momentum, heat and mass transfer, 3rd edn. Wiley, New York, pp 772–773

    Google Scholar 

  • Willenbacher N (1996) Unusual thixotropic properties of aqueous dispersions of laponite RD. J Colloid Interface Sci 182(2):501–510

    Article  Google Scholar 

  • Winter HH, Mours M (2004) http://rheology.tripod.com/

  • Wong D (2004) Novel pharmaceutical formulations containing polymer clay composites. US Patent Appl, US 20044101559, 27 May 2004

  • Zebrowski J, Prasad V, Zhang W, Walker LM, Weitz DA (2003) Shake-gels: shear-induced gelation of laponite–PEO mixtures. Colloids Surf, A Physicochem Eng Asp 213(2–3):189–197

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. H. H. Winter, University of Massachusetts, for technical assistance using IRIS, and to Dr. Norbert Willenbacher (Uni, Karlsruhe) for useful discussions. Funding from the National Science Foundation (DMR-0210223) supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman J. Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daga, V.K., Wagner, N.J. Linear viscoelastic master curves of neat and laponite-filled poly(ethylene oxide)–water solutions. Rheol Acta 45, 813–824 (2006). https://doi.org/10.1007/s00397-005-0059-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-005-0059-x

Keywords

Navigation