Skip to main content
Log in

Synthesis of copolymer-stabilized silver nanoparticles for coating materials

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Silver ions being less toxic than silver nanoparticles, a more safe material can be obtained to be used as antimicrobial coating. This can be achieved by using thiol chemistry and covalently attach the silver nanoparticles in the coating. Our aim is to produce a coating having antimicrobial properties of silver ions but with the silver nanoparticles firmly attached in the coating. Here, we present a way to produce silver nanoparticles that can be used as a component in a coating or as such to produce an antimicrobial coating. The silver nanoparticles presented here are stabilized by a copolymer (poly(butyl acrylate–methyl methacrylate)) that is soft and has well-known good film-producing properties. The reversible addition-fragmentation chain transfer radical polymerization technique used to prepare the polymers provides conveniently a thiol group for effective binding of the silver nanoparticles to the polymers and thus to the coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mukherjee P, Bhattacharya R, Wang P, Wang L, Basu S, Nagy JA, Atala A, Mukhopadhyay D, Soker S (2005) Antiangiogenic properties of gold nanoparticles. Clin Cancer Res 11:3530–3534

    Article  CAS  Google Scholar 

  2. Bhattacharya R, Patra C, Verma R, Kumar S, Greipp P, Mukherjee P (2007) Gold nanoparticles inhibit the proliferation of multiple myeloma cells. Adv Mater 19:711–716

    Article  CAS  Google Scholar 

  3. Mukherjee P, Bhattacharya R, Bone N, Lee Y, Patra C, Wang S, Lu L, Secreto C, Banerjee P, Yaszemski M, Kay N, Mukhopadhyay D (2007) Potential therapeutic application of gold nanoparticles in B-chronic lymphocytic leukemia (BCLL): enhancing apoptosis. J Nanobiotechnol 5:4

    Article  Google Scholar 

  4. Bhattacharya R, Mukherjee P, Xiong Z, Atala A, Soker S, Mukhopadhyay D (2004) Gold nanoparticles inhibit VEGF165-induced proliferation of HUVEC cells. Nano Lett 4:2479–2481

    Article  CAS  Google Scholar 

  5. Bhattacharya R, Mukherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 60:1289–1306

    Article  CAS  Google Scholar 

  6. Chen J, Tang J, Yan F, Ju H (2006) A gold nanoparticles/sol–gel composite architecture for encapsulation of immunoconjugate for reagentless electrochemical immunoassay. Biomaterials 27:2313–2321

    Article  CAS  Google Scholar 

  7. Spadaro JA, Berger TJ, Barranco SD, Chapin SE, Becker RO (1974) Antibacterial effects of silver electrodes with weak direct current. Antimicrob Agents Chemother 6:637–642

    CAS  Google Scholar 

  8. Berger TJ, Spadaro JA, Bierman R, Chapin SE, Becker RO (1976) Antifungal properties of electrically generated metallic ions. Antimicrob Agents Chemother 10:856–860

    CAS  Google Scholar 

  9. Berger TJ, Spadaro JA, Chapin SE, Becker RO (1976) Electrically generated silver ions: quantitative effects on bacterial and mammalian cells. Antimicrob Agents Chemother 9:357–358

    CAS  Google Scholar 

  10. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668

    Article  CAS  Google Scholar 

  11. Schreurs WJ, Rosenberg H (1982) Effect of silver ions on transport and retention of phosphate by Escherichia coli. J Bacteriol 152:7–13

    CAS  Google Scholar 

  12. Zhao G, Stevens SE (1998) Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals 11:27–32

    Article  CAS  Google Scholar 

  13. Kim JS, Kuk E, Yu KN, Kim J, Park S, Lee HJ, Kim SH, Park YK, Park YH, Hwang C, Kim Y, Lee Y, Jeong DH, Cho M (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101

    CAS  Google Scholar 

  14. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  Google Scholar 

  15. Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18:1–9

    Article  Google Scholar 

  16. Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ, Hong Y (2008) DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 233:404–410

    Article  CAS  Google Scholar 

  17. AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290

    Article  CAS  Google Scholar 

  18. Zhang S, Li J, Lykotrafitis G, Bao G, Suresh S (2009) Size-dependent endocytosis of nanoparticles. Adv Mater 21:419–424

    Article  Google Scholar 

  19. Larese FF, D'Agostin F, Crosera M, Adami G, Renzi N, Bovenzi M, Maina G (2009) Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology 255:33–37

    Article  CAS  Google Scholar 

  20. Enüstün BV, Turkevich J (1963) Coagulation of colloidal gold. J Am Chem Soc 85:3317–3328

    Article  Google Scholar 

  21. Ledwith DM, Whelan AM, Kelly JM (2007) A rapid, straight-forward method for controlling the morphology of stable silver nanoparticles. J Mater Chem 17:2459–2464

    Article  CAS  Google Scholar 

  22. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc Chem Commun 7:801–802

    Article  Google Scholar 

  23. Chen M, Feng Y, Wang X, Li T, Zhang J, Qian D (2007) Silver nanoparticles capped by oleylamine: formation, growth, and self-organization. Langmuir 23:5296–5304

    Article  CAS  Google Scholar 

  24. Feldmann C, Jungk H (2001) Polyol-mediated preparation of nanoscale oxide particles. Angew Chem Int Edit 40:359–362

    Article  CAS  Google Scholar 

  25. Wiley B, Sun Y, Xia Y (2007) Synthesis of silver nanostructures with controlled shapes and properties. Acc Chem Res 40:1067–1076

    Article  CAS  Google Scholar 

  26. Kim D, Jeong S, Moon J (2006) Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection. Nanotechnology 17:4019–4024

    Article  CAS  Google Scholar 

  27. Yliniemi K, Vahvaselka M, Ingelgem YV, Baert K, Wilson BP, Terryn H, Kontturi K (2008) The formation and characterisation of ultra-thin films containing Ag nanoparticles. J Mater Chem 18:199–206

    Article  CAS  Google Scholar 

  28. Lowe AB, Sumerlin BS, Donovan MS, McCormick CL (2002) Facile preparation of transition metal nanoparticles stabilized by well-defined (co)polymers synthesized via aqueous reversible addition-fragmentation chain transfer polymerization. J Am Chem Soc 124:11562–11563

    Article  CAS  Google Scholar 

  29. Shan J, Nuopponen M, Jiang H, Kauppinen E, Tenhu H (2003) Preparation of poly(N-isopropylacrylamide)-monolayer-protected gold clusters: synthesis methods, core size, and thickness of monolayer. Macromolecules 36:4526–4533

    Article  CAS  Google Scholar 

  30. Karesoja M, Jokinen H, Karjalainen E, Pulkkinen P, Torkkeli M, Soininen A, Ruokolainen J, Tenhu H (2009) Grafting of montmorillonite nano-clay with butyl acrylate and methyl methacrylate by atom transfer radical polymerization: blends with poly(BuA-co-MMA). J Polym Sci A Polym Chem 47:3086–3097

    Article  CAS  Google Scholar 

  31. Fernandez-Garcia M, Fuente JLDL, Fernandez-Sanz M, Madruga EL (2001) Glass transition temperatures of poly[(methyl methacrylate)-co-(butyl acrylate)]s synthesized by atom-transfer radical polymerization. Macromol Rapid Commun 22:1046–1052

    Article  CAS  Google Scholar 

  32. da Silva Paula MM, Franco CV, Baldin MC, Rodrigues L, Barichello T, Savi GD, Bellato LF, Fiori MA, da Silva L (2009) Synthesis, characterization and antibacterial activity studies of poly-{styrene-acrylic acid} with silver nanoparticles. Mater Sci Eng C 29:647–650

    Article  Google Scholar 

  33. Jiang X, Zeng Q, Yu A (2006) A self-seeding coreduction method for shape control of silver nanoplates. Nanotechnology 17:4929–4935

    Article  CAS  Google Scholar 

  34. Jana NR, Gearheart L, Murphy CJ (2001) Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chem Mater 13:2313–2322

    Article  CAS  Google Scholar 

  35. Moores A, Goettmann F (2006) The plasmon band in noble metal nanoparticles: an introduction to theory and applications. New J Chem 30:1121–1132

    Article  CAS  Google Scholar 

  36. Bakumov V, Kroke E (2008) Polysilazane-induced aggregation of hydrophobic silver colloids. Langmuir 24:10709–10716

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This was a MNT ERA-NET project funded by the Finnish Funding Agency for Technology and Innovation, TEKES, Finland. Dr. Pablo Aras and Dr. Adriana Gil from NANOTEC ELECTRONICA are thanked for the AFM characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heikki Tenhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niskanen, J., Shan, J., Tenhu, H. et al. Synthesis of copolymer-stabilized silver nanoparticles for coating materials. Colloid Polym Sci 288, 543–553 (2010). https://doi.org/10.1007/s00396-009-2178-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2178-x

Keywords

Navigation