Skip to main content
Log in

Soluble guanylyl cyclase activation improves progressive cardiac remodeling and failure after myocardial infarction. Cardioprotection over ACE inhibition

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Impaired nitric oxide (NO)–soluble guanylate cyclase (sGC)–cGMP signaling is involved in the pathogenesis of ischemic heart diseases, yet the impact of long-term sGC activation on progressive cardiac remodeling and heart failure after myocardial infarction (MI) has not been explored. Moreover, it is unknown whether stimulating the NO/heme-independent sGC provides additional benefits to ACE inhibition in chronic ischemic heart failure. Starting 10 days after MI, rats were treated with placebo, the sGC activator ataciguat (10 mg/kg/twice daily), ramipril (1 mg/kg/day), or a combination of both for 9 weeks. Long-term ataciguat therapy reduced left ventricular (LV) diastolic filling pressure and pulmonary edema, improved the rightward shift of the pressure–volume curve, LV contractile function and diastolic stiffness, without lowering blood pressure. NO/heme-independent sGC activation provided protection over ACE inhibition against mitochondrial superoxide production and progressive fibrotic remodeling, ultimately leading to a further improvement of cardiac performance, hypertrophic growth and heart failure. We found that ataciguat stimulating sGC activity was potentiated in (myo)fibroblasts during hypoxia-induced oxidative stress and that NO/heme-independent sGC activation modulated fibroblast–cardiomyocyte crosstalk in the context of heart failure and hypoxia. In addition, ataciguat inhibited human cardiac fibroblast differentiation and extracellular matrix protein production in response to TGF-β1. Overall, long-term sGC activation targeting extracellular matrix homeostasis conferred cardioprotection against progressive cardiac dysfunction, pathological remodeling and heart failure after myocardial infarction. NO/heme-independent sGC activation may prove to be a useful therapeutic target in patients with chronic heart failure and ongoing fibrotic remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bayeva M, Gheorghiade M, Ardehali H (2013) Mitochondria as a therapeutic target in heart failure. J Am Coll Cardiol 61:599–610. doi:10.1016/j.jacc.2012.08.1021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Bice JS, Keim Y, Stasch JP, Baxter GF (2014) NO-independent stimulation or activation of soluble guanylyl cyclase during early reperfusion limits infarct size. Cardiovasc Res 101:220–228. doi:10.1093/cvr/cvt257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Bonderman D, Ghio S, Felix SB, Ghofrani HA, Michelakis E, Mitrovic V, Oudiz RJ, Boateng F, Scalise AV, Roessig L, Semigran MJ (2013) Riociguat for patients with pulmonary hypertension caused by systolic left ventricular dysfunction: a phase IIb double-blind, randomized, placebo-controlled, dose-ranging hemodynamic study. Circulation 128:502–511. doi:10.1161/CIRCULATIONAHA.113.001458

    Article  CAS  PubMed  Google Scholar 

  4. Burchfield JS, Xie M, Hill JA (2013) Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation 128:388–400. doi:10.1161/CIRCULATIONAHA.113.001878

    Article  PubMed  Google Scholar 

  5. D‘Souza KM, Malhotra R, Philip JL, Staron ML, Theccanat T, Jeevanandam V, Akhter SA (2011) G protein-coupled receptor kinase-2 is a novel regulator of collagen synthesis in adult human cardiac fibroblasts. J Biol Chem 286:15507–15516. doi:10.1074/jbc.M111.218263

    Article  PubMed Central  PubMed  Google Scholar 

  6. Erdmann E, Semigran MJ, Nieminen MS, Gheorghiade M, Agrawal R, Mitrovic V, Mebazaa A (2013) Cinaciguat, a soluble guanylate cyclase activator, unloads the heart but also causes hypotension in acute decompensated heart failure. Eur Heart J 34:57–67. doi:10.1093/eurheartj/ehs196

    Article  CAS  PubMed  Google Scholar 

  7. Erdmann J, Stark K, Esslinger UB, Rumpf PM, Koesling D, de Wit C, Kaiser FJ, Braunholz D, Medack A, Fischer M, Zimmermann ME, Tennstedt S, Graf E, Eck S, Aherrahrou Z, Nahrstaedt J, Willenborg C, Bruse P, Braenne I, Nothen MM, Hofmann P, Braund PS, Mergia E, Reinhard W, Burgdorf C, Schreiber S, Balmforth AJ, Hall AS, Bertram L, Steinhagen-Thiessen E, Li SC, Marz W, Reilly M, Kathiresan S, McPherson R, Walter U, Cardiogram, Ott J, Samani NJ, Strom TM, Meitinger T, Hengstenberg C, Schunkert H (2013) Dysfunctional nitric oxide signalling increases risk of myocardial infarction. Nature 504:432–436. doi:10.1038/nature12722

    Article  CAS  PubMed  Google Scholar 

  8. Fraccarollo D, Berger S, Galuppo P, Kneitz S, Hein L, Schutz G, Frantz S, Ertl G, Bauersachs J (2011) Deletion of cardiomyocyte mineralocorticoid receptor ameliorates adverse remodeling after myocardial infarction. Circulation 123:400–408. doi:10.1161/CIRCULATIONAHA.110.983023

    Article  CAS  PubMed  Google Scholar 

  9. Fraccarollo D, Widder JD, Galuppo P, Thum T, Tsikas D, Hoffmann M, Ruetten H, Ertl G, Bauersachs J (2008) Improvement in left ventricular remodeling by the endothelial nitric oxide synthase enhancer AVE9488 after experimental myocardial infarction. Circulation 118:818–827. doi:10.1161/CIRCULATIONAHA.107.717702

    Article  CAS  PubMed  Google Scholar 

  10. Frantz S, Klaiber M, Baba HA, Oberwinkler H, Volker K, Gabetaner B, Bayer B, Abebetaer M, Schuh K, Feil R, Hofmann F, Kuhn M (2013) Stress-dependent dilated cardiomyopathy in mice with cardiomyocyte-restricted inactivation of cyclic GMP-dependent protein kinase I. Eur Heart J 34:1233–1244. doi:10.1093/eurheartj/ehr445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Fujiu K, Nagai R (2013) Contributions of cardiomyocyte–cardiac fibroblast–immune cell interactions in heart failure development. Basic Res Cardiol 108:357. doi:10.1007/s00395-013-0357-x

    Article  PubMed  Google Scholar 

  12. Gheorghiade M, Marti CN, Sabbah HN, Roessig L, Greene SJ, Bohm M, Burnett JC, Campia U, Cleland JG, Collins SP, Fonarow GC, Levy PD, Metra M, Pitt B, Ponikowski P, Sato N, Voors AA, Stasch JP, Butler J (2013) Soluble guanylate cyclase: a potential therapeutic target for heart failure. Heart Fail Rev 18:123–134. doi:10.1007/s10741-012-9323-1

    Article  CAS  PubMed  Google Scholar 

  13. Ghofrani HA, D‘Armini AM, Grimminger F, Hoeper MM, Jansa P, Kim NH, Mayer E, Simonneau G, Wilkins MR, Fritsch A, Neuser D, Weimann G, Wang C (2013) Riociguat for the treatment of chronic thromboembolic pulmonary hypertension. N Engl J Med 369:319–329. doi:10.1056/NEJMoa1209657

    Article  CAS  PubMed  Google Scholar 

  14. Ghofrani HA, Galie N, Grimminger F, Grunig E, Humbert M, Jing ZC, Keogh AM, Langleben D, Kilama MO, Fritsch A, Neuser D, Rubin LJ (2013) Riociguat for the treatment of pulmonary arterial hypertension. N Engl J Med 369:330–340. doi:10.1056/NEJMoa1209655

    Article  CAS  PubMed  Google Scholar 

  15. Gorbe A, Giricz Z, Szunyog A, Csont T, Burley DS, Baxter GF, Ferdinandy P (2010) Role of cGMP-PKG signaling in the protection of neonatal rat cardiac myocytes subjected to simulated ischemia/reoxygenation. Basic Res Cardiol 105:643–650. doi:10.1007/s00395-010-0097-0

    Article  CAS  PubMed  Google Scholar 

  16. Hafstad AD, Nabeebaccus AA, Shah AM (2013) Novel aspects of ROS signalling in heart failure. Basic Res Cardiol 108:359. doi:10.1007/s00395-013-0359-8

    Article  PubMed  Google Scholar 

  17. Heusch G, Libby P, Gersh B, Yellon D, Bohm M, Lopaschuk G, Opie L (2014) Cardiovascular remodelling in coronary artery disease and heart failure. Lancet. doi:10.1016/S0140-6736(14)60107-0 (Epub ahead of print)

    PubMed  Google Scholar 

  18. Heusch P, Aker S, Boengler K, Deindl E, van de Sand A, Klein K, Rassaf T, Konietzka I, Sewell A, Menazza S, Canton M, Heusch G, Di Lisa F, Schulz R (2010) Increased inducible nitric oxide synthase and arginase II expression in heart failure: no net nitrite/nitrate production and protein S-nitrosylation. Am J Physiol Heart Circ Physiol 299:H446–H453. doi:10.1152/ajpheart.01034.2009

    Article  CAS  PubMed  Google Scholar 

  19. Holley AK, Bakthavatchalu V, Velez-Roman JM, St Clair DK (2011) Manganese superoxide dismutase: guardian of the powerhouse. Int J Mol Sci 12:7114–7162. doi:10.3390/ijms12107114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Johnell O, Scheele WH, Lu Y, Reginster JY, Need AG, Seeman E (2002) Additive effects of raloxifene and alendronate on bone density and biochemical markers of bone remodeling in postmenopausal women with osteoporosis. J Clin Endocrinol Metab 87:985–992

    Article  CAS  PubMed  Google Scholar 

  21. Kakkar R, Lee RT (2010) Intramyocardial fibroblast myocyte communication. Circ Res 106:47–57. doi:10.1161/CIRCRESAHA.109.207456

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Korkmaz S, Radovits T, Barnucz E, Hirschberg K, Neugebauer P, Loganathan S, Veres G, Pali S, Seidel B, Zollner S, Karck M, Szabo G (2009) Pharmacological activation of soluble guanylate cyclase protects the heart against ischemic injury. Circulation 120:677–686. doi:10.1161/CIRCULATIONAHA.109.870774

    Article  CAS  PubMed  Google Scholar 

  23. Liu Y, Dillon AR, Tillson M, Makarewich C, Nguyen V, Dell’Italia L, Sabri AK, Rizzo V, Tsai EJ (2013) Volume overload induces differential spatiotemporal regulation of myocardial soluble guanylyl cyclase in eccentric hypertrophy and heart failure. J Mol Cell Cardiol 60:72–83. doi:10.1016/j.yjmcc.2013.03.019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Masuyama H, Tsuruda T, Kato J, Imamura T, Asada Y, Stasch JP, Kitamura K, Eto T (2006) Soluble guanylate cyclase stimulation on cardiovascular remodeling in angiotensin II-induced hypertensive rats. Hypertension 48:972–978. doi:10.1161/01.HYP.0000241087.12492.47

    Article  CAS  PubMed  Google Scholar 

  25. Masuyama H, Tsuruda T, Sekita Y, Hatakeyama K, Imamura T, Kato J, Asada Y, Stasch JP, Kitamura K (2009) Pressure-independent effects of pharmacological stimulation of soluble guanylate cyclase on fibrosis in pressure-overloaded rat heart. Hypertens Res 32:597–603. doi:10.1038/hr.2009.64

    Article  CAS  PubMed  Google Scholar 

  26. Methner C, Lukowski R, Grube K, Loga F, Smith RA, Murphy MP, Hofmann F, Krieg T (2013) Protection through postconditioning or a mitochondria-targeted S-nitrosothiol is unaffected by cardiomyocyte-selective ablation of protein kinase G. Basic Res Cardiol 108:337. doi:10.1007/s00395-013-0337-1

    Article  PubMed  Google Scholar 

  27. Mitsuishi M, Miyashita K, Itoh H (2008) cGMP rescues mitochondrial dysfunction induced by glucose and insulin in myocytes. Biochem Biophys Res Commun 367:840–845. doi:10.1016/j.bbrc.2008.01.017

    Article  CAS  PubMed  Google Scholar 

  28. Oberwittler H, Hirschfeld-Warneken A, Wesch R, Willerich H, Teichert L, Lehr KH, Ding R, Haefeli WE, Mikus G (2007) Significant pharmacokinetic and pharmacodynamic interaction of warfarin with the NO-independent sGC activator HMR1766. J Clin Pharmacol 47:70–77. doi:10.1177/0091270006294540

    Article  CAS  PubMed  Google Scholar 

  29. Oelze M, Mollnau H, Hoffmann N, Warnholtz A, Bodenschatz M, Smolenski A, Walter U, Skatchkov M, Meinertz T, Munzel T (2000) Vasodilator-stimulated phosphoprotein serine 239 phosphorylation as a sensitive monitor of defective nitric oxide/cGMP signaling and endothelial dysfunction. Circ Res 87:999–1005. doi:10.1161/01.RES.87.11.999

    Article  CAS  PubMed  Google Scholar 

  30. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424. doi:10.1152/physrev.00029.2006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Perrino C, Schiattarella GG, Sannino A, Pironti G, Petretta MP, Cannavo A, Gargiulo G, Ilardi F, Magliulo F, Franzone A, Carotenuto G, Serino F, Altobelli GG, Cimini V, Cuocolo A, Lombardi A, Goglia F, Indolfi C, Trimarco B, Esposito G (2013) Genetic deletion of uncoupling protein 3 exaggerates apoptotic cell death in the ischemic heart leading to heart failure. J Am Heart Assoc 2:e000086. doi:10.1161/JAHA.113.000086

    Article  PubMed Central  PubMed  Google Scholar 

  32. Razeghi P, Young ME, Ying J, Depre C, Uray IP, Kolesar J, Shipley GL, Moravec CS, Davies PJ, Frazier OH, Taegtmeyer H (2002) Downregulation of metabolic gene expression in failing human heart before and after mechanical unloading. Cardiology 97:203–209

    Article  CAS  PubMed  Google Scholar 

  33. Sabbah HN, Gupta RC, Kohli S, Wang M, Rastogi S, Zhang K, Zimmermann K, Diedrichs N, Albrecht-Kupper BE (2013) Chronic therapy with a partial adenosine A1-receptor agonist improves left ventricular function and remodeling in dogs with advanced heart failure. Circ Heart Fail 6:563–571. doi:10.1161/CIRCHEARTFAILURE.112.000208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Salloum FN, Das A, Samidurai A, Hoke NN, Chau VQ, Ockaili RA, Stasch JP, Kukreja RC (2012) Cinaciguat, a novel activator of soluble guanylate cyclase, protects against ischemia/reperfusion injury: role of hydrogen sulfide. Am J Physiol Heart Circ Physiol 302:H1347–H1354. doi:10.1152/ajpheart.00544.2011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Schafer A, Flierl U, Kobsar A, Eigenthaler M, Ertl G, Bauersachs J (2006) Soluble guanylyl cyclase activation with HMR1766 attenuates platelet activation in diabetic rats. Arterioscler Thromb Vasc Biol 26:2813–2818. doi:10.1161/01.ATV.0000249407.92147.12

    Article  PubMed  Google Scholar 

  36. Schafer A, Fraccarollo D, Werner L, Bauersachs J (2010) Guanylyl cyclase activator ataciguat improves vascular function and reduces platelet activation in heart failure. Pharmacol Res 62:432–438. doi:10.1016/j.phrs.2010.06.008

    Article  PubMed  Google Scholar 

  37. Schafer A, Galuppo P, Fraccarollo D, Vogt C, Widder JD, Pfrang J, Tas P, Barbosa-Sicard E, Ruetten H, Ertl G, Fleming I, Bauersachs J (2010) Increased cytochrome P4502E1 expression and altered hydroxyeicosatetraenoic acid formation mediate diabetic vascular dysfunction: rescue by guanylyl-cyclase activation. Diabetes 59:2001–2009. doi:10.2337/db09-1668

    Article  PubMed Central  PubMed  Google Scholar 

  38. Schindler U, Strobel H, Schonafinger K, Linz W, Lohn M, Martorana PA, Rutten H, Schindler PW, Busch AE, Sohn M, Topfer A, Pistorius A, Jannek C, Mulsch A (2006) Biochemistry and pharmacology of novel anthranilic acid derivatives activating heme-oxidized soluble guanylyl cyclase. Mol Pharmacol 69:1260–1268. doi:10.1124/mol.105.018747

    Article  CAS  PubMed  Google Scholar 

  39. Slinker BK (1998) The statistics of synergism. J Mol Cell Cardiol 30:723–731. doi:10.1006/jmcc.1998.0655

    Article  CAS  PubMed  Google Scholar 

  40. Stasch JP, Pacher P, Evgenov OV (2011) Soluble guanylate cyclase as an emerging therapeutic target in cardiopulmonary disease. Circulation 123:2263–2273. doi:10.1161/CIRCULATIONAHA.110.981738

    Article  PubMed Central  PubMed  Google Scholar 

  41. Toime LJ, Brand MD (2010) Uncoupling protein-3 lowers reactive oxygen species production in isolated mitochondria. Free Radic Biol Med 49:606–611. doi:10.1016/j.freeradbiomed.2010.05.010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Tsai EJ, Kass DA (2009) Cyclic GMP signaling in cardiovascular pathophysiology and therapeutics. Pharmacol Ther 122:216–238. doi:10.1016/j.pharmthera.2009.02.009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Tsai EJ, Liu Y, Koitabashi N, Bedja D, Danner T, Jasmin JF, Lisanti MP, Friebe A, Takimoto E, Kass DA (2012) Pressure-overload-induced subcellular relocalization/oxidation of soluble guanylyl cyclase in the heart modulates enzyme stimulation. Circ Res 110:295–303. doi:10.1161/CIRCRESAHA.111.259242

    Article  CAS  PubMed  Google Scholar 

  44. Tsutsui H, Kinugawa S, Matsushima S (2009) Mitochondrial oxidative stress and dysfunction in myocardial remodelling. Cardiovasc Res 81:449–456. doi:10.1093/cvr/cvn280

    Article  CAS  PubMed  Google Scholar 

  45. Tullio F, Angotti C, Perrelli MG, Penna C, Pagliaro P (2013) Redox balance and cardioprotection. Basic Res Cardiol 108:392. doi:10.1007/s00395-013-0392-7

    Article  PubMed  Google Scholar 

  46. Wang X, Gong J, Liu X, Zhan R, Kong R, Zhao Y, Wan D, Leng X, Chen M, Qian L (2010) Expression of uncoupling protein 3 in mitochondria protects against stress-induced myocardial injury: a proteomic study. Cell Stress Chaperones 15:771–779. doi:10.1007/s12192-010-0185-y

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Westermann D, Becher PM, Lindner D, Savvatis K, Xia Y, Frohlich M, Hoffmann S, Schultheiss HP, Tschope C (2012) Selective PDE5A inhibition with sildenafil rescues left ventricular dysfunction, inflammatory immune response and cardiac remodeling in angiotensin II-induced heart failure in vivo. Basic Res Cardiol 107:308. doi:10.1007/s00395-012-0308-y

    Article  PubMed  Google Scholar 

  48. Xie M, Burchfield JS, Hill JA (2013) Pathological ventricular remodeling: therapies: part 2 of 2. Circulation 128:1021–1030. doi:10.1161/CIRCULATIONAHA.113.001879

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Susanne Schraut, Martina Kasten and Silke Pretzer for expert technical assistance. This study was partly supported by a research grant from Sanofi-Aventis.

Conflict of interest

Daniela Fraccarollo and Johann Bauersachs received research grant support from Sanofi-Aventis related to ataciguat.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann Bauersachs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1034 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fraccarollo, D., Galuppo, P., Motschenbacher, S. et al. Soluble guanylyl cyclase activation improves progressive cardiac remodeling and failure after myocardial infarction. Cardioprotection over ACE inhibition. Basic Res Cardiol 109, 421 (2014). https://doi.org/10.1007/s00395-014-0421-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-014-0421-1

Keywords

Navigation