Skip to main content

Advertisement

Log in

Cardiac primitive cells become committed to a cardiac fate in adult human heart with chronic ischemic disease but fail to acquire mature phenotype: genetic and phenotypic study

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Adult human heart hosts a population of cardiac primitive CD117-positive cells (CPCs), which are responsible for physiological tissue homeostasis and regeneration. While the bona fide stem cells express telomerase, their progenies are no longer able to preserve telomeric DNA; hence the balance between their proliferation and differentiation has to be tightly controlled in order to prevent cellular senescence and apoptosis of CPCs before their maturation can be accomplished. We have examined at cellular and molecular level the proliferation, apoptosis and commitment of CPCs isolated from normal (CPC-N) and age-matched pathological adult human hearts (CPC-P) with ischemic heart disease. In the CPC-P, genes related to early stages of developmental processes, nervous system development and neurogenesis, skeletal development, bone and cartilage development were downregulated, while those involved in mesenchymal cell differentiation and heart development were upregulated, together with the transcriptional activation of TGFβ/BMP signaling pathway. In the pathological heart, asymmetric division was the prevalent type of cardiac stem cell division. The population of CPC-P consisted mainly of progenitors of cardiac cell lineages and less precursors; these cells proliferated more, but were also more susceptible to apoptosis with respect to CPC-N. These results indicate that CPCs fail to reach terminal differentiation and functional competence in pathological conditions. Adverse effects of underlying pathology, which disrupts cardiac tissue structure and composition, and cellular senescence, resulting from cardiac stem cell activation in telomere dysfunctional environment, can be responsible for such outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aguilera O, Fernández AF, Muñoz A, Fraga MF (2010) Epigenetics and environment: a complex relationship. J Appl Physiol 109:243–251. doi:10.1152/japplphysiol.00068.2010

    Article  PubMed  CAS  Google Scholar 

  2. Alt EU, Senst C, Murthy SN, Slakey DP, Dupin CL, Chaffin AE, Kadowitz PJ, Izadpanah R (2012) Aging alters tissue resident mesenchymal stem cell properties. Stem Cell Res 8:215–225. doi:10.1016/j.scr.2011.11.002

    Article  PubMed  CAS  Google Scholar 

  3. Altarche-Xifró W, Curato C, Kaschina E, Grzesiak A, Slavic S, Dong J, Kappert K, Steckelings M, Imboden H, Unger T, Li J (2009) Cardiac c-kit+AT2+ cell population is increased in response to ischemic injury and supports cardiomyocyte performance. Stem Cells 27:2488–2497. doi:10.1002/stem.171

    Article  PubMed  Google Scholar 

  4. Ballard VL (2010) Stem cells for heart failure in the aging heart. Heart Fail Rev 15:447–456. doi:10.1007/s10741-010-9160-z

    Article  PubMed  Google Scholar 

  5. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisén J (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102. doi:10.1126/science.1164680

    Article  PubMed  CAS  Google Scholar 

  6. Bolli R, Chugh AR, D’Amario D, Loughran JH, Stoddard MF, Ikram S, Beache GM, Wagner SG, Leri A, Hosoda T, Sanada F, Elmore JB, Goichberg P, Cappetta D, Solankhi NK, Fahsah I, Rokosh DG, Slaughter MS, Kajstura J, Anversa P (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378:1847–1857. doi:10.1016/S0140-6736(11)61590-0

    Article  PubMed  Google Scholar 

  7. Bungartz G, Stiller S, Bauer M, Müller W, Schippers A, Wagner N, Fässler R, Brakebusch C (2006) Adult murine hematopoiesis can proceed without beta1 and beta7 integrins. Blood 108:1857–1864. doi:10.1182/blood-2005-10-007658

    Article  PubMed  CAS  Google Scholar 

  8. Castaldo C, Di Meglio F, Nurzynska D, Romano G, Maiello C, Bancone C, Műller P, Bőhm M, Cotrufo M, Montagnani S (2008) CD117-positive cells in adult human heart are localized in the subepicardium, and their activation is associated with laminin-1 and alpha6 integrin expression. Stem Cells 26:1723–1731. doi:10.1634/stemcells.2007-0732

    Article  PubMed  CAS  Google Scholar 

  9. Cesselli D, Beltrami AP, D’Aurizio F, Marcon P, Bergamin N, Toffoletto B, Pandolfi M, Puppato E, Marino L, Signore S, Livi U, Verardo R, Piazza S, Marchionni L, Fiorini C, Schneider C, Hosoda T, Rota M, Kajstura J, Anversa P, Beltrami CA, Leri A (2011) Effects of age and heart failure on human cardiac stem cell function. Am J Pathol 179:349–366. doi:10.1016/j.ajpath.2011.03.036

    Article  PubMed  CAS  Google Scholar 

  10. D’Amario D, Fiorini C, Campbell PM, Goichberg P, Sanada F, Zheng H, Hosoda T, Rota M, Connell JM, Gallegos RP, Welt FG, Givertz MM, Mitchell RN, Leri A, Kajstura J, Pfeffer MA, Anversa P (2011) Functionally competent cardiac stem cells can be isolated from endomyocardial biopsies of patients with advanced cardiomyopathies. Circ Res 108:857–861. doi:10.1161/CIRCRESAHA.111.241380

    Article  PubMed  Google Scholar 

  11. Di Meglio F, Castaldo C, Nurzynska D, Romano V, Miraglia R, Bancone C, Langella G, Vosa C, Montagnani S (2010) Epithelial–mesenchymal transition of epicardial mesothelium is a source of cardiac CD117-positive stem cells in adult human heart. J Mol Cell Cardiol 49:719–727. doi:10.1016/j.yjmcc.2010.05.013

    Article  PubMed  Google Scholar 

  12. Drummond-Barbosa D (2008) Stem cells, their niches and the systemic environment: an aging network. Genetics 180:1787–1797. doi:10.1534/genetics.108.098244

    Article  PubMed  Google Scholar 

  13. Eckhouse SR, Spinale FG (2012) Changes in the myocardial interstitium and contribution to the progression of heart failure. Heart Fail Clin 8:7–20. doi:10.1016/j.hfc.2011.08.012

    Article  PubMed  Google Scholar 

  14. Egger B, Gold KS, Brand AH (2010) Notch regulates the switch from symmetric to asymmetric neural stem cell division in the Drosophila optic lobe. Development 137:2981–2987. doi:10.1242/dev.051250

    Article  PubMed  CAS  Google Scholar 

  15. Felix SB (2011) Editorial on the manuscript entitled “Impact of troponin I-autoantibodies in chronic dilated and ischemic cardiomyopathy” by Andreas O. Doesch and co-workers. Basic Res Cardiol 106:1–4. doi:10.1007/s00395-010-0140-1

    Article  PubMed  Google Scholar 

  16. Fisher SA, Langille BL, Srivastava D (2000) Apoptosis during cardiovascular development. Circ Res 87:856–864. doi:10.1161/01.RES.87.10.856

    Article  PubMed  CAS  Google Scholar 

  17. Heusch G (2011) SCIPIO brings new momentum to cardiac cell therapy. Lancet 378:1827–1828. doi:10.1016/S0140-6736(11)61648-6

    Article  PubMed  Google Scholar 

  18. Hsieh PC, Segers VF, Davis ME, MacGillivray C, Gannon J, Molkentin JD, Robbins J, Lee RT (2007) Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med 13:970–974. doi:10.1038/nm1618

    Article  PubMed  CAS  Google Scholar 

  19. da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57. doi:10.1038/nprot.2008.211

    Article  CAS  Google Scholar 

  20. Kajstura J, Gurusamy N, Ogórek B, Goichberg P, Clavo-Rondon C, Hosoda T, D’Amario D, Bardelli S, Beltrami AP, Cesselli D, Bussani R, del Monte F, Quaini F, Rota M, Beltrami CA, Buchholz BA, Leri A, Anversa P (2010) Myocyte turnover in the aging human heart. Circ Res 107:1374–1386. doi:10.1161/CIRCRESAHA.110.23148

    Article  PubMed  CAS  Google Scholar 

  21. Kubo H, Jaleel N, Kumarapeli A, Berretta RM, Bratinov G, Shan X, Wang H, Houser SR, Margulies KB (2008) Increased cardiac myocyte progenitors in failing human hearts. Circulation 118:649–657. doi:10.1161/CIRCULATIONAHA.107.761031

    Article  PubMed  Google Scholar 

  22. Lorenzen JM, Martino F, Thum T (2012) Epigenetic modifications in cardiovascular disease. Basic Res Cardiol 107:245–249. doi:10.1007/s00395-012-0245-9

    Article  PubMed  Google Scholar 

  23. Miner EC, Miller WL (2006) A look between the cardiomyocytes: the extracellular matrix in heart failure. Mayo Clin Proc 81:71–76. doi:10.4065/81.1.71

    Article  PubMed  CAS  Google Scholar 

  24. Nurzynska D, Castaldo C, Montagnani S, Di Meglio F (2012) Cardiac progenitor and stem cell biology and therapy. In: Atala A (ed) Progenitor and stem cell technologies and therapies, 1st edn. Woodhead Publishing, Cambridge, pp 418–442

    Chapter  Google Scholar 

  25. Oerlemans MI, Goumans MJ, van Middelaar B, Clevers H, Doevendans PA, Sluijter JP (2010) Active Wnt signaling in response to cardiac injury. Basic Res Cardiol 105:631–641. doi:10.1007/s00395-010-0100-9

    Article  PubMed  CAS  Google Scholar 

  26. Ohtani K, Dimmeler S (2011) Epigenetic regulation of cardiovascular differentiation. Cardiovasc Res 90:404–412. doi:10.1093/cvr/cvr019

    Article  PubMed  CAS  Google Scholar 

  27. Poelmann RE, Molin D, Wisse LJ, Gittenberger-de Groot AC (2000) Apoptosis in cardiac development. Cell Tissue Res 301:43–52. doi:10.1007/s004410000227

    Article  PubMed  CAS  Google Scholar 

  28. Rossi DJ, Bryder D, Zahn JM, Ahlenius H, Sonu R, Wagers AJ, Weissman IL (2005) Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci USA 102:9194–9199. doi:10.1073/pnas.0503280102

    Article  PubMed  CAS  Google Scholar 

  29. Rupp S, Bauer J, von Gerlach S, Fichtlscherer S, Zeiher AM, Dimmeler S, Schranz D (2012) Pressure overload leads to an increase of cardiac resident stem cells. Basic Res Cardiol 107(2):252. doi:10.1007/s00395-012-0252-x

    Article  PubMed  CAS  Google Scholar 

  30. Sandstedt J, Jonsson M, Kajic K, Sandstedt M, Lindahl A, Dellgren G, Jeppsson A, Asp J (2012) Left atrium of the adult heart contains a population of side population cells. Basic Res Cardiol 107:255. doi:10.1007/s00395-012-0255-7

    Article  PubMed  Google Scholar 

  31. Song Z, Zhang J, Ju Z, Rudolph KL (2012) Telomere dysfunctional environment induces loss of quiescence and inherent impairments of hematopoietic stem cell function. Aging Cell 11:449–455. doi:10.1111/j.1474-9726.2012.00802.x

    Article  PubMed  Google Scholar 

  32. Votteler M, Kluger PJ, Walles H, Schenke-Layland K (2010) Stem cell microenvironments—unveiling the secret of how stem cell fate is defined. Macromol Biosci 10:1302–1315. doi:10.1002/mabi.201000102

    Article  PubMed  CAS  Google Scholar 

  33. Wagers AJ (2012) The stem cell niche in regenerative medicine. Cell Stem Cell 10:362–369. doi:10.1016/j.stem.2012.02.018

    Article  PubMed  CAS  Google Scholar 

  34. Wessels A, Pérez-Pomares JM (2004) The epicardium and epicardially derived cells (EPDCs) as cardiac stem cells. Anat Rec A Discov Mol Cell Evol Biol 276:43–57. doi:10.1002/ar.a.1012

    Article  PubMed  CAS  Google Scholar 

  35. Wu J, Li J, Zhang N, Zhang C (2011) Stem cell-based therapies in ischemic heart diseases: a focus on aspects of microcirculation and inflammation. Basic Res Cardiol 106:317–324. doi:10.1007/s00395-011-0168-x

    Article  PubMed  Google Scholar 

  36. Zhou B, Ma Q, Rajagopal S, Wu SM, Domian I, Rivera-Feliciano J, Jiang D, von Gise A, Ikeda S, Chien KR, Pu WT (2008) Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454:109–113. doi:10.1038/nature07060

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Future in Research (Futuro in Ricerca) program of the Italian Ministry of Education, University and Research (Ministero dell’Istruzione, dell’Università e della Ricerca), grant RBFR10L0GK (University of Naples “Federico II”).

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daria Nurzynska or Clotilde Castaldo.

Additional information

D. Nurzynska, F. Di Meglio and C. Castaldo contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nurzynska, D., Di Meglio, F., Romano, V. et al. Cardiac primitive cells become committed to a cardiac fate in adult human heart with chronic ischemic disease but fail to acquire mature phenotype: genetic and phenotypic study. Basic Res Cardiol 108, 320 (2013). https://doi.org/10.1007/s00395-012-0320-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-012-0320-2

Keywords

Navigation