Skip to main content

Advertisement

Log in

The renin inhibitor aliskiren upregulates pro-angiogenic cells and reduces atherogenesis in mice

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Sca-1 and VEGFR-2 positive pro-angiogenic cells (PAC) predict outcome of patients with vascular disease. Activation of the renin–angiotensin–aldosterone system impairs PAC function. The effects of the direct renin inhibitor aliskiren on PAC numbers and function are not known. Treatment of C57Bl/6 mice and Apo E−/− mice on high-cholesterol diet with aliskiren, 25 mg/kg/day s.c. for 3–6 weeks, reduced systolic and diastolic blood pressure by −11.5 and −13.7% compared to vehicle. Aliskiren increased Sca-1/VEGFR-2 positive PAC in the blood (159 ± 14%) and spleen-derived DiLDL/lectin positive PAC (180 ± 21%). Migratory capacity of PAC was increased to 165 ± 16%. In cultured human PAC, aliskiren dose-dependently increased the number of colony forming units to 152 ± 9% (1 μmol/l) and 187 ± 7% (10 μmol/l), which was prevented by the eNOS inhibitor LNMA. H2O2-induced apoptosis of cultured human PAC was reduced to 77 ± 23%. In Apo E−/− mice, aliskiren reduced atherosclerotic plaque area in the aortic sinus by 58 ± 4%. Circulating Sca-1/VEGFR-2 positive PAC were upregulated to 180 ± 25% and migratory capacity of PAC was increased to 127 ± 7%. Aliskiren reduced vascular NADPH oxidase activity to 41.6 ± 6.7%. Despite similar blood pressure lowering, treatment with hydralazine (25 mg/kg/day) did not significantly influence atherogenesis or PAC. Treatment of C57Bl/6 mice with a lower dose of aliskiren (15 mg/kg/day) did not affect blood pressure but increased cultured DiLDL/lectin positive PAC to 229 ± 30% and their migratory capacity to 214 ± 24%. Aliskiren increased number and function of PAC in mice and prevented atherosclerotic lesion formation. The effects were observed independent of blood pressure lowering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adams V, Lenk K, Linke A, Lenz D, Erbs S, Sandri M, Tarnok A, Gielen S, Emmrich F, Schuler G, Hambrecht R (2004) Increase of circulating endothelial progenitor cells in patients with coronary artery disease after exercise-induced ischemia. Arterioscler Thromb Vasc Biol 24:684–690

    Article  PubMed  CAS  Google Scholar 

  2. Aicher A, Heeschen C, Mildner-Rihm C, Urbich C, Ihling C, Technau-Ihling K, Zeiher AM, Dimmeler S (2003) Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 9:1370–1376

    Article  PubMed  CAS  Google Scholar 

  3. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  PubMed  CAS  Google Scholar 

  4. Bahlmann FH, de Groot K, Mueller O, Hertel B, Haller H, Fliser D (2005) Stimulation of endothelial progenitor cells: a new putative therapeutic effect of angiotensin II receptor antagonists. Hypertension 45:526–529

    Article  PubMed  CAS  Google Scholar 

  5. Campbell DJ (2008) Interpretation of plasma renin concentration in patients receiving aliskiren therapy. Hypertension 51:15–18

    Article  PubMed  CAS  Google Scholar 

  6. Dernbach E, Randriamboavonjy V, Fleming I, Zeiher AM, Dimmeler S, Urbich C (2008) Impaired interaction of platelets with endothelial progenitor cells in patients with cardiovascular risk factors. Basic Res Cardiol 103:572–581

    Article  PubMed  Google Scholar 

  7. Dimmeler S, Aicher A, Vasa M, Mildner-Rihm C, Adler K, Tiemann M, Rutten H, Fichtlscherer S, Martin H, Zeiher AM (2001) HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest 108:391–397

    PubMed  CAS  Google Scholar 

  8. Fadini GP, Sartore S, Albiero M, Baesso I, Murphy E, Menegolo M, Grego F, Vigili de Kreutzenberg S, Tiengo A, Agostini C, Avogaro A (2006) Number and function of endothelial progenitor cells as a marker of severity for diabetic vasculopathy. Arterioscler Thromb Vasc Biol 26:2140–2146

    Article  PubMed  CAS  Google Scholar 

  9. Friedrich EB, Werner C, Walenta K, Böhm M, Scheller B (2009) Role of extracellular signal-regulated kinase for endothelial progenitor cell dysfunction in coronary artery disease. Basic Res Cardiol 104:613–620

    Article  PubMed  CAS  Google Scholar 

  10. Gensch C, Clever YP, Werner C, Hanhoun M, Böhm M, Laufs U (2007) The PPAR-gamma agonist pioglitazone increases neoangiogenesis and prevents apoptosis of endothelial progenitor cells. Atherosclerosis 192:67–74

    Article  PubMed  CAS  Google Scholar 

  11. Harrison D, Griendling KK, Landmesser U, Hornig B, Drexler H (2003) Role of oxidative stress in atherosclerosis. Am J Cardiol 91:7A–11A

    Article  PubMed  CAS  Google Scholar 

  12. Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348:593–600

    Article  PubMed  Google Scholar 

  13. Ii M, Takenaka H, Asai J, Ibusuki K, Mizukami Y, Maruyama K, Yoon YS, Wecker A, Luedemann C, Eaton E, Silver M, Thorne T, Losordo DW (2006) Endothelial progenitor thrombospondin-1 mediates diabetes-induced delay in reendothelialization following arterial injury. Circ Res 98:697–704

    Article  PubMed  CAS  Google Scholar 

  14. Imanishi T, Hano T, Nishio I (2005) Angiotensin II accelerates endothelial progenitor cell senescence through induction of oxidative stress. J Hypertens 23:97–104

    Article  PubMed  CAS  Google Scholar 

  15. Imanishi T, Tsujioka H, Ikejima H, Kuroi A, Takarada S, Kitabata H, Tanimoto T, Muragaki Y, Mochizuki S, Goto M, Yoshida K, Akasaka T (2008) Renin inhibitor aliskiren improves impaired nitric oxide bioavailability and protects against atherosclerotic changes. Hypertension 52:563–572

    Article  PubMed  CAS  Google Scholar 

  16. Kaur S, Kumar TR, Uruno A, Sugawara A, Jayakumar K, Kartha CC (2009) Genetic engineering with endothelial nitric oxide synthase improves functional properties of endothelial progenitor cells from patients with coronary artery disease: an in vitro study. Basic Res Cardiol 104:739–749

    Article  PubMed  Google Scholar 

  17. Keymel S, Kalka C, Rassaf T, Yeghiazarians Y, Kelm M, Heiss C (2008) Impaired endothelial progenitor cell function predicts age-dependent carotid intimal thickening. Basic Res Cardiol 103:582–586

    Article  PubMed  Google Scholar 

  18. Kleinbongard P, Weber AA (2008) Impaired interaction between platelets and endothelial progenitor cells in diabetic patients. Basic Res Cardiol 103:569–571

    Article  PubMed  Google Scholar 

  19. Laufs U, Urhausen A, Werner N, Scharhag J, Heitz A, Kissner G, Böhm M, Kindermann W, Nickenig G (2005) Running exercise of different duration and intensity: effect on endothelial progenitor cells in healthy subjects. Eur J Cardiovasc Prev Rehabil 12:407–414

    Article  PubMed  Google Scholar 

  20. Laufs U, Wassmann S, Czech T, Munzel T, Eisenhauer M, Böhm M, Nickenig G (2005) Physical inactivity increases oxidative stress, endothelial dysfunction, and atherosclerosis. Arterioscler Thromb Vasc Biol 25:809–814

    Article  PubMed  CAS  Google Scholar 

  21. Laufs U, Werner N, Link A, Endres M, Wassmann S, Jurgens K, Miche E, Böhm M, Nickenig G (2004) Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation 109:220–226

    Article  PubMed  CAS  Google Scholar 

  22. Lu H, Rateri DL, Feldman DL, Charnigo RJ Jr, Fukamizu A, Ishida J, Oesterling EG, Cassis LA, Daugherty A (2008) Renin inhibition reduces hypercholesterolemia-induced atherosclerosis in mice. J Clin Invest 118:984–993

    Google Scholar 

  23. Maack C, Kartes T, Kilter H, Schafers HJ, Nickenig G, Böhm M, Laufs U (2003) Oxygen free radical release in human failing myocardium is associated with increased activity of rac1-GTPase and represents a target for statin treatment. Circulation 108:1567–1574

    Article  PubMed  CAS  Google Scholar 

  24. Melnyk RA, Tam J, Boie Y, Kennedy BP, Percival MD (2009) Renin and prorenin activate pathways implicated in organ damage in human mesangial cells independent of angiotensin II production. Am J Nephrol 30:232–243

    Article  PubMed  CAS  Google Scholar 

  25. Min TQ, Zhu CJ, Xiang WX, Hui ZJ, Peng SY (2004) Improvement in endothelial progenitor cells from peripheral blood by ramipril therapy in patients with stable coronary artery disease. Cardiovasc Drugs Ther 18:203–209

    Article  PubMed  CAS  Google Scholar 

  26. Müller P, Kazakov A, Jagoda P, Semenov A, Böhm M, Laufs U (2009) ACE inhibition promotes upregulation of endothelial progenitor cells and neoangiogenesis in cardiac pressure overload. Cardiovasc Res 83:106–114

    Article  PubMed  CAS  Google Scholar 

  27. Nguyen G, Delarue F, Burckle C, Bouzhir L, Giller T, Sraer JD (2002) Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest 109:1417–1427

    PubMed  CAS  Google Scholar 

  28. Nussberger J, Aubert JF, Bouzourene K, Pellegrin M, Hayoz D, Mazzolai L (2008) Renin inhibition by aliskiren prevents atherosclerosis progression: comparison with irbesartan, atenolol, and amlodipine. Hypertension 51:1306–1311

    Article  PubMed  CAS  Google Scholar 

  29. Qian C, Schoemaker RG, van Gilst WH, Roks AJ (2009) The role of the renin–angiotensin–aldosterone system in cardiovascular progenitor cell function. Clin Sci (Lond) 116:301–314

    Article  CAS  Google Scholar 

  30. Rauscher FM, Goldschmidt-Clermont PJ, Davis BH, Wang T, Gregg D, Ramaswami P, Pippen AM, Annex BH, Dong C, Taylor DA (2003) Aging, progenitor cell exhaustion, and atherosclerosis. Circulation 108:457–463

    Article  PubMed  Google Scholar 

  31. Ray R, Shah AM (2005) NADPH oxidase and endothelial cell function. Clin Sci (Lond) 109:217–226

    Article  CAS  Google Scholar 

  32. Schachinger V, Assmus B, Honold J, Lehmann R, Hofmann WK, Martin H, Dimmeler S, Zeiher AM (2006) Normalization of coronary blood flow in the infarct-related artery after intracoronary progenitor cell therapy: intracoronary Doppler substudy of the TOPCARE-AMI trial. Clin Res Cardiol 95:13–22

    Article  PubMed  CAS  Google Scholar 

  33. Schmidt-Lucke C, Rossig L, Fichtlscherer S, Vasa M, Britten M, Kamper U, Dimmeler S, Zeiher AM (2005) Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation 111:2981–2987

    Article  PubMed  Google Scholar 

  34. Schroder K, Kohnen A, Aicher A, Liehn EA, Buchse T, Stein S, Weber C, Dimmeler S, Brandes RP (2009) NADPH oxidase Nox2 is required for hypoxia-induced mobilization of endothelial progenitor cells. Circ Res 105:537–544

    Article  PubMed  CAS  Google Scholar 

  35. Schuh A, Liehn EA, Sasse A, Hristov M, Sobota R, Kelm M, Merx MW, Weber C (2008) Transplantation of endothelial progenitor cells improves neovascularization and left ventricular function after myocardial infarction in a rat model. Basic Res Cardiol 103:69–77

    Article  PubMed  Google Scholar 

  36. Seeger FH, Sedding D, Langheinrich AC, Haendeler J, Zeiher AM, Dimmeler S (2010) Inhibition of the p38 MAP kinase in vivo improves number and functional activity of vasculogenic cells and reduces atherosclerotic disease progression. Basic Res Cardiol 105:389–397

    Article  PubMed  CAS  Google Scholar 

  37. Shintani S, Murohara T, Ikeda H, Ueno T, Honma T, Katoh A, Sasaki K, Shimada T, Oike Y, Imaizumi T (2001) Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation 103:2776–2779

    Article  PubMed  CAS  Google Scholar 

  38. Steinmetz M, Brouwers C, Nickenig G, Wassmann S (2009) Synergistic effects of telmisartan and simvastatin on endothelial progenitor cells. J Cell Mol Med 14:1645–1656

    Article  PubMed  Google Scholar 

  39. Steinmetz M, Nickenig G, Werner N (2010) Endothelial-regenerating cells: an expanding universe. Hypertension 55:593–599

    Article  PubMed  CAS  Google Scholar 

  40. Strehlow K, Werner N, Berweiler J, Link A, Dirnagl U, Priller J, Laufs K, Ghaeni L, Milosevic M, Böhm M, Nickenig G (2003) Estrogen increases bone marrow-derived endothelial progenitor cell production and diminishes neointima formation. Circulation 107:3059–3065

    Article  PubMed  CAS  Google Scholar 

  41. Tepper OM, Galiano RD, Capla JM, Kalka C, Gagne PJ, Jacobowitz GR, Levine JP, Gurtner GC (2002) Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 106:2781–2786

    Article  PubMed  Google Scholar 

  42. Thum T, Fraccarollo D, Galuppo P, Tsikas D, Frantz S, Ertl G, Bauersachs J (2006) Bone marrow molecular alterations after myocardial infarction: impact on endothelial progenitor cells. Cardiovasc Res 70:50–60

    Article  PubMed  CAS  Google Scholar 

  43. Thum T, Fraccarollo D, Thum S, Schultheiss M, Daiber A, Wenzel P, Munzel T, Ertl G, Bauersachs J (2007) Differential effects of organic nitrates on endothelial progenitor cells are determined by oxidative stress. Arterioscler Thromb Vasc Biol 27:748–754

    Article  PubMed  CAS  Google Scholar 

  44. Uraoka M, Ikeda K, Nakagawa Y, Koide M, Akakabe Y, Nakano-Kurimoto R, Takahashi T, Matoba S, Yamada H, Okigaki M, Matsubara H (2009) Prorenin induces ERK activation in endothelial cells to enhance neovascularization independently of the renin–angiotensin system. Biochem Biophys Res Commun 390:1202–1207

    Article  PubMed  CAS  Google Scholar 

  45. Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, Zeiher AM, Dimmeler S (2001) Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 89:E1–E7

    Article  PubMed  CAS  Google Scholar 

  46. Walter DH, Rittig K, Bahlmann FH, Kirchmair R, Silver M, Murayama T, Nishimura H, Losordo DW, Asahara T, Isner JM (2002) Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation 105:3017–3024

    Article  PubMed  CAS  Google Scholar 

  47. Wang CH, Verma S, Hsieh IC, Chen YJ, Kuo LT, Yang NI, Wang SY, Wu MY, Hsu CM, Cheng CW, Cherng WJ (2006) Enalapril increases ischemia-induced endothelial progenitor cell mobilization through manipulation of the CD26 system. J Mol Cell Cardiol 41:34–43

    Article  PubMed  CAS  Google Scholar 

  48. Werner N, Junk S, Laufs U, Link A, Walenta K, Böhm M, Nickenig G (2003) Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury. Circ Res 93:e17–e24

    Article  PubMed  CAS  Google Scholar 

  49. Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A, Böhm M, Nickenig G (2005) Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 353:999–1007

    Article  PubMed  CAS  Google Scholar 

  50. Werner N, Priller J, Laufs U, Endres M, Böhm M, Dirnagl U, Nickenig G (2002) Bone marrow-derived progenitor cells modulate vascular reendothelialization and neointimal formation: effect of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibition. Arterioscler Thromb Vasc Biol 22:1567–1572

    Article  PubMed  CAS  Google Scholar 

  51. Werner N, Wassmann S, Ahlers P, Kosiol S, Nickenig G (2006) Circulating CD31+/annexin V + apoptotic microparticles correlate with coronary endothelial function in patients with coronary artery disease. Arterioscler Thromb Vasc Biol 26:112–116

    Article  PubMed  CAS  Google Scholar 

  52. Yao EH, Fukuda N, Matsumoto T, Kobayashi N, Katakawa M, Yamamoto C, Tsunemi A, Suzuki R, Ueno T, Matsumoto K (2007) Losartan improves the impaired function of endothelial progenitor cells in hypertension via an antioxidant effect. Hypertens Res 30:1119–1128

    Article  PubMed  Google Scholar 

  53. You D, Cochain C, Loinard C, Vilar J, Mees B, Duriez M, Levy BI, Silvestre JS (2008) Hypertension impairs postnatal vasculogenesis: role of antihypertensive agents. Hypertension 51:1537–1544

    Article  PubMed  CAS  Google Scholar 

  54. Yu Y, Fukuda N, Yao EH, Matsumoto T, Kobayashi N, Suzuki R, Tahira Y, Ueno T, Matsumoto K (2008) Effects of an ARB on endothelial progenitor cell function and cardiovascular oxidation in hypertension. Am J Hypertens 21:72–77

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ellen Becker, Simone Jäger and Lena Brachmann for their excellent technical assistance. This study was supported by the Deutsche Forschungsgemeinschaft (UL, MB) and the Universität des Saarlandes (HOMFOR, JP).

Conflict of interest

The Universität des Saarlandes received an unrestricted minor grant from Novartis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janine Pöss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pöss, J., Werner, C., Lorenz, D. et al. The renin inhibitor aliskiren upregulates pro-angiogenic cells and reduces atherogenesis in mice. Basic Res Cardiol 105, 725–735 (2010). https://doi.org/10.1007/s00395-010-0120-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-010-0120-5

Keywords

Navigation