Skip to main content

Advertisement

Log in

Signal transducer and activator of transcription 3 is involved in the cardioprotective signalling pathway activated by insulin therapy at reperfusion

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Objective

To evaluate the significance of the JAK-STAT pathway in insulin-induced cardioprotection from reperfusion injury.

Methods

In isolated perfused rat hearts subjected to insulin therapy (0.3 mU/ml) ± AG490 (5 µM, JAK-STAT inhibitor), the phosphorylation state of STAT3 and Akt was determined after 15 min of reperfusion. Infarct size was measured after 120 min of reperfusion. Isolated cardiac myocytes from wild type (WT) and cardiac specific STAT3 deficient mice were treated with insulin at reoxygenation following simulated ischemia (SI, 26 h). Cell viability was measured after 120 min of reoxygenation following SI, whereas phosphorylation state of Akt was measured after 15 min of reoxygenation following SI.

Results

Insulin given at reperfusion led to phosphorylation of STAT3 and Akt both of which were inhibited by AG490. AG490 also blocked the insulin-dependent decrease in infarct size, supporting a role for JAK-STAT in cardioprotection. In addition, insulin protection from SI was blocked in myocytes from the STAT3 deficient mice, or in WT mice treated with AG490. Furthermore, insulin failed to phosphorylate Akt in the STAT3 deficient cardiomyocytes.

Conclusion

Insulin-induced cardioprotection at reperfusion occurs through activation of STAT3. Inhibiting STAT3 by AG490, or STAT3 depletion in cardiac myocytes affects activation of Akt, suggesting close interaction between STAT3 and Akt in the cardioprotective signalling pathway activated by insulin treatment at reperfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alessi DR, Deak M, Casamayor A, Caudwell FB, Morrice N, Norman DG, Gaffney P, Reese CB, MacDougall CN, Harbison D, Ashworth A, Bownes M (1997) 3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase. Curr Biol 7:776–789

    Article  PubMed  CAS  Google Scholar 

  2. Bolli R, Dawn B, Xuan YT (2001) Emerging role of the JAK-STAT pathway as a mechanism of protection against ischemia/reperfusion injury. J Mol Cell Cardiol 33:1893–1896

    Article  PubMed  CAS  Google Scholar 

  3. Carvalho CRO, Carvalheira JBC, Lima MHM, Zimmerman SF, Caperuto LC, Amanso A, Gasparetti AL, Meneghetti V, Zimmerman LF, Velloso LA, Saad MJA (2003) Novel signal transduction pathway for luteinizing hormone and its interaction with insulin: activation of Janus kinase/signal transducer and activator of transcription and phosphoinositol 3-kinase/Akt pathways. Endocrinology 144:638–647

    Article  PubMed  CAS  Google Scholar 

  4. Chen J, Kubalak SW, Minamisawa S, Price RL, Becker KD, Hickey R, Ross J Jr, Chien KR (1998) Selective requirement of myosin light chain 2v in embryonic heart function. J Biol Chem 273:1252–1256

    Article  PubMed  CAS  Google Scholar 

  5. Chen J, Kubalak SW, Chien KR (1998) Ventricular muscle-restricted targeting of the RXRalpha gene reveals a non-cell-autonomous requirement in cardiac chamber morphogenesis. Development 125:1943–1949

    PubMed  CAS  Google Scholar 

  6. Darnell JE Jr (1997) STATs and gene regulation. Science 277:1630–1635

    Article  PubMed  CAS  Google Scholar 

  7. Darnell JE, Kerr IM, Stark GR (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264:1415–1421

    Article  PubMed  CAS  Google Scholar 

  8. De Vos J, Jourdan M, Tarte K, Jasmin C, Klein B (2000) JAK2 tyrosine kinase inhibitor tyrphostin AG490 downregulates the mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription (STAT) pathways and induces apoptosis in myeloma cells. Br J Haematol 109:823–828

    Article  PubMed  Google Scholar 

  9. Díaz R, Paolasso EA, Piegas LS, Tajer CD, Moreno MG, Corvalán R, Isea JE, Romero G (1998) Metabolic modulation of acute myocardial infarction: The ECLA glucose-insulin-potassium pilot trial. Circulation 98:2227–2234

    PubMed  Google Scholar 

  10. Esumi K, Nishida M, Shaw D, Smith TW, Marsh JD (1991) NADH measurements in adult rat myocytes during simulated ischemia. Am J Physiol 260:1743–1752

    Google Scholar 

  11. Ferrand A, Kowalski-Chauvel A, Bertrand C, Escrieut C, Mathieu A, Portolan G, Pradayrol L, Fourmy D, Dufresne M, Seva C (2005) A novel mechanism for JAK2 activation by a G protein-coupled receptor, the CCK2R: implication of this signaling pathway in pancreatic tumor models. J Biol Chem 280:10710–10715

    Article  PubMed  CAS  Google Scholar 

  12. Fischer P, Hilfiker-Kleiner D (2007) Survival pathways in hypertrophy and heart failure: the gp130-STAT3 axis. Basic Res Cardiol 102:279–297

    Article  PubMed  CAS  Google Scholar 

  13. Gross ER, Hsu AK, Gross GJ (2006) The JAK/STAT pathway is essential for opioid-induced cardioprotection: JAK2 as a mediator of STAT3, Akt and GSK-3β. Am J Physiol Heart Circ Physiol 291:827–834

    Article  CAS  Google Scholar 

  14. Gross ER, Hsu AK, Gross GJ (2007) GSK3β inhibition and KATP channel opening mediate acute opioid-induced cardioprotection at reperfusion. Basic Res Cardiol 102:341–349

    Article  PubMed  CAS  Google Scholar 

  15. Gual P, Baron V, Lequoy V, Van Obberghen E (1998) Interaction of Janus kinases JAK-1 and JAK-2 with the insulin receptor and the insulin-like growth factor-1 receptor. Endocrinology 139:884–893

    Article  PubMed  CAS  Google Scholar 

  16. Hattori R, Maulik N, Otani H, Zhu L, Cordis G, Engelman RM, Siddiqui MAQ, Das DK (2001) Role of STAT3 in ischemic preconditioning. J Mol Cell Cardiol 33:1929–1936

    Article  PubMed  CAS  Google Scholar 

  17. Hilfiker-Kleiner D, Hilfiker A, Fuchs M, Kaminski K, Schaefer A, Schieffer B, Hillmer A, Schmiedl A, Ding Z, Podewski E, Podewski E, Poli V, Schneider MD, Schulz R, Park JK, Wollert KC, Drexler H (2004) Signal transducer and activator of transcription 3 is required for myocardial capillary growth, control of interstitial matrix deposition, and heart protection from ischemic injury. Circ Res 95:187–195

    Article  PubMed  CAS  Google Scholar 

  18. Ihle JN (1996) STATs: signal transducers and activators of transcription. Cell 84:331–334

    Article  PubMed  CAS  Google Scholar 

  19. Jonassen AK, Mjøs OD, Sack MN (2004) p70s6 kinase is a functional target of insulin activated Akt cell-survival signaling. Biochem Biophys Res Commun 315:160–165

    Article  PubMed  CAS  Google Scholar 

  20. Jonassen AK, Sack MN, Mjøs OD, Yellon DM (2001) Myocardial protection by insulin at reperfusion requires early administration and is mediated via Akt and p70s6 kinase cell-survival signaling. Circ Res 89:1191–1198

    Article  PubMed  CAS  Google Scholar 

  21. Jonassen AK, Brar BK, Mjos OD, Sack MN, Latchman DS, Yellon DM (2000) Insulin administered at reoxygenation exerts a cardioprotective effect in myocytes by a possible anti-apoptotic mechanism. J Mol Cell Cardiol 32:757–764

    Article  PubMed  CAS  Google Scholar 

  22. Jonassen AK, Aasum E, Riemersma RA, Mjøs OD, Larsen TS (2000) Glucose-insulin-potassium reduces infarct size when administered during reperfusion. Cardiovasc Drugs Ther 14:615–623

    Article  PubMed  CAS  Google Scholar 

  23. Kawamoto T, Sato JD, McClureDB, Sato GH (1986) Serum-free medium for the growth of NS-1 mouse myeloma cells and the isolation of NS-1 hybridomas. Meth Enzymol 121:266–277

    Article  PubMed  CAS  Google Scholar 

  24. Lecour S, Suleman N, Deuchar GA, Somers S, Lacerda L, Huisamen B, Opie LH (2005) Pharmacological preconditioning with tumor necrosis factor-α activates signal tranducer and activator of transcription-3 at reperfusion without involving classic prosurvival kinases (Akt and extracellular signal-regulated kinase). Circulation 112:3911–3918

    Article  PubMed  CAS  Google Scholar 

  25. Marais E, Genade S, Huisamen B, Strijdom JG, Moolman JA, Lochner A (2001) Activation of p38 MAPK induced by a multi-cycle ischaemic preconditioning protocol is associated with attenuated p38 MAPK activity during sustained ischaemia and reperfusion. J Mol Cell Cardiol 33:769–778

    Article  PubMed  CAS  Google Scholar 

  26. Mascareno E, El-Shafei M, Maulik N, Sato M, Guo Y, Das DK, Siddiqui MAQ (2001) JAK/STAT signaling is associated with cardiac dysfunction during ischemia and reperfusion. Circulation 104:325–329

    PubMed  CAS  Google Scholar 

  27. Meydan N, Grunberger T, Dadi H, Shahar M, Arpaia E, Lapidot Z, Leeder JS, Freedman M, Cohen A, Gazit A, Levitzki, Roifman CM (1996) Inhibition of acute lymphoblastic leukaemia by a JAK-2-inhibitor. Nature 379:645–647

    Article  PubMed  CAS  Google Scholar 

  28. Negoro S, Kunisada K, Fujio Y, Funamoto M, Darville MI, Eizirik DL, Osugi T, Izumi M, Oshima Y, Nakaoka Y, Hirota H, Kishimoto T, Yamauchi-Takihara K (2001) Activation of signal transducer and activator of transcription 3 protects cardiomyocytes from hypoxia/reoxygenation-induced oxidative stress through the upregulation of manganese superoxide dismutase. Circulation 104:979–981

    Article  PubMed  CAS  Google Scholar 

  29. Negoro S, Kunisada K, Tone E, Funamoto M, Oh H, Kishimoto T, Yamauchi-Takihara K (2000) Activation of JAK/STAT pathway transduces cytoprotective signal in rat acute myocardial infarction. Cardiovasc Res 47:797–805

    Article  PubMed  CAS  Google Scholar 

  30. O’Neill BT, Kim J, Wende AR, Theobald HA, Tuinei J, Buchanan J, Guo A, Zaha VG, Davis DK, Schell JC, Boudina S, Wayment B, Litwin SE, Shioi T, Izumo S, Birnbaum MJ, Abel ED (2007) A conserved role for phospatidylinositol 3-kinase but not Akt signaling in mitochondrial adaptations that accompany physiological cardiac hypertrophy. Cell Metab 6:294–306

    Article  PubMed  CAS  Google Scholar 

  31. Opie LH (2008) Metabolic management of AMI comes to the fore and extends beyond control of hyperglycemia. Circulation 117:1610–1619

    Google Scholar 

  32. Park SY, Cho YR, Finck BN, Kim HJ, Higashimori T, Hong EG, Lee MK, Danton C, Deshmukh S, Cline GW, Wu JJ, Bennett AM, Rothermel B, Kalinowski A, Russell KS, Kim YB, Kelly DP, Kim JK (2005) Cardiac-specific overexpression of peroxisome proliferators-activated receptor-α causes insulin resistance in heart and liver. Diabetes 54:2514–2524

    Article  PubMed  CAS  Google Scholar 

  33. Pelletier S, Duhamel F, Coulombe P, Popoff MR, Meloche S (2003) Rho family GTPases are required for activation of Jak/STAT signaling by G protein-coupled receptors. Mol Cell Biol 23:1316–1333

    Article  PubMed  CAS  Google Scholar 

  34. Pfeffer LM, Mullersman JE, Pfeffer SR, Murti A, Shi W, Yang CH (1997) STAT3 as an adapter to couple phosphatidylinositol 3-kinase to the IFNAR1 chain of the type I interferon receptor. Science 276:1418–1420

    Article  PubMed  CAS  Google Scholar 

  35. Saad MJ, Carvalho CR, Thirone AC, Velloso LA (1996) Insulin induces tyrosine phosphorylation of JAK2 in insulin-sensitive tissues of the intact rat. J Biol Chem 271:22100–22104

    Article  PubMed  CAS  Google Scholar 

  36. Sandberg EM, Wallace TA, Godeny MD, VonDerLinden D, Sayeski PP (2004) Jak2 tyrosine kinase. A true jak of all trades? Cell Biochem Biophys 41:207–231

    Article  PubMed  Google Scholar 

  37. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101

    Article  PubMed  CAS  Google Scholar 

  38. Shuai K, Ziemiecki A, Wilks AF, Harpur AG, Sadowski HB, Gilman MZ, Darnell JE (1993) Polypeptide signalling to the nucleus through tyrosine phosphorylation of Jak and Stat proteins. Nature 366:580–583

    Article  PubMed  CAS  Google Scholar 

  39. Smith RM, Suleman N, Lacerda L, Opie LH, Akira S, Chien KR, Sack MN (2004) Genetic depletion of cardiac myocyte STAT-3 abolishes classical preconditioning. Cardiovasc Res 63:611–616

    Article  PubMed  CAS  Google Scholar 

  40. Suleman N, Somers S, Smith R, Opie LH, Lecour S (2008) Dual activation of STAT-3 and Akt is required during the trigger phase of ischaemic preconditioning. Cardiovasc Res (in press)

  41. Sussman M (2007) “AKT”ing lessons for stem cells: regulation of cardiac myocytes and progenitor cell proliferation. Trends Cardiovasc Med 17:235–240

    Article  PubMed  CAS  Google Scholar 

  42. Takeda K, Kaisho T, Yoshida N, Takeda J, Kishimoto T, Akira S (1998) Stat3 activation is responsible for IL-6-dependent T cell proliferation through preventing apoptosis: generation and characterization of T cell-specific Stat3-deficient mice. J Immunol 161:4652–4660

    PubMed  CAS  Google Scholar 

  43. Taler M, Shpungin S, Salem Y, Malovani H, Pasder O, Nir U (2003) Fer is a downstream effector of insulin and mediates the activaton of signal transducer and activator of transcription 3 in myogenic cells. Mol Endocrinol 17:1580–1592

    Article  PubMed  CAS  Google Scholar 

  44. Ueda K, Takano H, Hasegawa H, Niitsuma Y, Qin Y, Ohtsuka M, Komuro I (2006) Granulocyte colony stimulating factor directly inhibits myocardial ischemia-reperfusion injury through Akt-Endothelial NO synthase pathway. Arterioscler Thromb Vasc Biol 26:108–113

    Article  CAS  Google Scholar 

  45. Vignais ML, Gilman M (1999) Distinct mechanisms of activation of Stat1 and Stat3 by platelet-derived growth factor receptor in a cell-free system. Mol Cell Biol 19:3727–3735

    PubMed  CAS  Google Scholar 

  46. Xuan YT, Guo Y, Han H, Zhu Y, Bolli R (2001) An essential role of the JAK-STAT pathway in ischemic preconditioning. Proc Natl Acad Sci USA 98:9050–9055

    Article  PubMed  CAS  Google Scholar 

  47. Yang XM, Philipp S, Downey JM, Cohen MV (2006) Atrial natriuretic peptide administered just prior to reperfusion limits infarction in rabbit hearts. Basic Res Cardiol 101:311–318

    Article  PubMed  CAS  Google Scholar 

  48. Zecchin GH, De Souza CT, Prada PO, Carvalheira JBC, Velloso LA, Saad MJA (2005) Effect of obesity on insulin signaling through JAK2 in rat aorta. Vascul Pharmacol 43:346–352

    Article  CAS  Google Scholar 

  49. Zhang X, Shan P, Alam J, Fu XY, Lee PJ (2005) Carbon monoxide differentially modulates STAT1 and STAT3 and inhibits apoptosis via a phosphatidylinositol 3-kinase/Akt and p38 kinase-dependent STAT3 pathway during anoxia-reoxygenation injury. J Biol Chem 280:8714–8721

    Article  PubMed  CAS  Google Scholar 

  50. Zhou YY, Wang SQ, Zhu WZ, Chruscinski A, Kobilka BK, Ziman B, Wang S, Lakatta EG, Cheng H, Xiao RP (2000) Culture and adenoviral infection of adult mouse cardiac myocytes: methods for cellular genetic physiology. Am J Physiol Heart Circ Physiol 279:429–436

    Google Scholar 

  51. Zong CS, Chan J, Levy DE, Horvath C, Sadowski HB, Wang LH (2000) Mechanism of STAT3 activation by insulin-like growth factor I receptor. J Biol Chem 275:15099–15105

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Norwegian Research Council, the SOUTH AFRICA-NORWAY programme on research co-operation, and by the Medical Research Council of South Africa. B.N.F was supported by the Norwegian Council on Cardiovascular Diseases, The Norwegian National Health Association. N.S was supported by the South African National Research Foundation. S.L was supported by a Servier Senior Fellowship in Heart Failure. We thank Shizuo Akira for the floxed STAT3 mouse and Kenneth R Chien for the MLC2V cre-recombinase mice, and Professor Kirsti Ytrehus for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Britt N. Fuglesteg.

Additional information

Returned for 1. Revision: 7 January 2008 1. Revision received: 31 March 2008

Returned for 2. Revision: 15 April 2008 2. Revision received: 18 April 2008

Britt N. Fuglesteg and Naushaad Suleman contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuglesteg, B.N., Suleman, N., Tiron, C. et al. Signal transducer and activator of transcription 3 is involved in the cardioprotective signalling pathway activated by insulin therapy at reperfusion. Basic Res Cardiol 103, 444–453 (2008). https://doi.org/10.1007/s00395-008-0728-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-008-0728-x

Keywords

Navigation