Skip to main content
Log in

Neues zur Pathogenese der Myositiden

New aspects on the pathogenesis of myositis

  • Leitthema
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Zusammenfassung

Idiopathische inflammatorische Myopathien (IIM) sind entzündliche Erkrankungen des Muskelapparates mit chronischem Verlauf und Muskelschwäche. Hierbei kommt es bei den 3 Haupterkrankungen, der Dermatomyositis, der Polymyositis und der Einschlusskörperchenmyositis, zu immunologischen Angriffsprozessen auf das Muskelgewebe durch das humorale antikörperbildende Immunsystem (B-Zellen), wie auch durch das zelluläre Immunsystem (dendritische Zellen, Monozyten/Makrophagen, CD4+- und CD8+-T-Zellen und natürliche Killerzellen). Letzteres wirkt dabei nicht nur autoaggressiv zytotoxisch, sondern unterhält auch die Entzündung. Über die Pathogenese der IIM ist bislang noch wenig bekannt. Dennoch scheinen genetische Prädispositionen und Umweltfaktoren eine unterstützende Rolle bei der Krankheitsinitiierung und im Verlauf zu spielen. Insbesondere scheinen auch Infektionen mit Pilzen, Bakterien und/oder Viren ätiologisch bedeutsam. Bis dato existieren nur wenige Merkmale zur Beurteilung der individuellen Prognose oder zur Abschätzung des therapiespezifischen Behandlungserfolgs. Konventionelle und neuere Behandlungsstrategien sind kritisch unter Berücksichtigung der Vergleichbarkeit der Studien zu bewerten. Zur Entwicklung neuer und zielgerichteter Therapien wird zunehmend die Einbeziehung von genomweiten Untersuchungsmethoden relevant, um molekulare Pathomechanismen systematisch zu erfassen und die Ätiopathogenese bei IIM besser zu verstehen. Diese Methoden wecken auch die Hoffnung, geeignete Biomarker für die Klassifikation, therapeutische Stratifizierung, Aktivitätsbestimmung, Prognose und die krankheitsspezifischen Subgruppen patientenspezifisch zu identifizieren.

Abstract

Idiopathic inflammatory myopathies (IIM) are chronic inflammatory diseases of muscle characterized by proximal muscle weakness. There are three main groups of diseases, dermatomyositis, polymyositis and inclusion body myositis. The muscle tissue is invaded by the humoral autoantibody producing immune system (B-cells) and by the cellular immune system with autoaggressive and inflammation modulating cells (e.g. dendritic cells, monocytes/macrophages, CD4 + and CD8 + T-cells and natural killer cells). The presence of specific or associated autoantibodies and inflammatory cellular infiltrates with cytotoxic and immune autoreactive properties are characteristic for IIM diseases. The pathogenesis is still unknown; nevertheless, there are several hints that exogenic factors might be involved in initiation and disease progression and bacterial, fungal and viral infections are thought to be possible initiators. Up to now information on prognostic markers to help with decision-making for individual treatment are limited. In addition, there has been only limited therapeutic success including conventional or novel drugs and biologicals and comparative validation studies are needed using similar outcome measurements. Moreover, to facilitate the use and development of novel therapies, elaboration of intracellular and cell-specific regulation could be useful to understand the etiopathogenesis and allow a better diagnosis, prognosis and possibly also a prediction for individualized subgroup treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Pestronk A (2011) Acquired immune and inflammatory myopathies: pathologic classification. Curr Opin Rheumatol 23:595–604

    Article  PubMed  CAS  Google Scholar 

  2. Greenberg SA (2010) Theories of the pathogenesis of inclusion body myositis. Curr Rheumatol Rep 12:221–228

    Article  PubMed  CAS  Google Scholar 

  3. Askanas V, Engel WK, Nogalska A (2012) Pathogenic considerations in sporadic inclusion-body myositis, a degenerative muscle disease associated with aging and abnormalities of myoproteostasis. J Neuropathol Exp Neurol 71:680–693

    Article  PubMed  CAS  Google Scholar 

  4. Ghirardello A, Rampudda M, Ekholm L et al (2010) Diagnostic performance and validation of autoantibody testing in myositis by a commercial line blot assay. Rheumatology (Oxford) 49:2370–2374

    Google Scholar 

  5. Betteridge ZE, Gunawardena H, Chinoy H et al (2009) Clinical and human leucocyte antigen class II haplotype associations of autoantibodies to small ubiquitin-like modifier enzyme, a dermatomyositis-specific autoantigen target, in UK Caucasian adult-onset myositis. Ann Rheum Dis 68:1621–1625

    Article  PubMed  CAS  Google Scholar 

  6. Huizing M, Krasnewich DM (2009) Hereditary inclusion body myopathy: a decade of progress. Biochim Biophys Acta 1792:881–887

    Article  PubMed  CAS  Google Scholar 

  7. Chinoy H, Ollier WE, Cooper RG (2004) Have recent immunogenetic investigations increased our understanding of disease mechanisms in the idiopathic inflammatory myopathies? Curr Opin Rheumatol 16:707–713

    Article  PubMed  Google Scholar 

  8. Rider LG, Shamim E, Okada S et al (1999) Genetic risk and protective factors for idiopathic inflammatory myopathy in Koreans and American whites: a tale of two loci. Arthritis Rheum 42:1285–1290

    Article  PubMed  CAS  Google Scholar 

  9. Arnett FC, Targoff IN, Mimori T et al (1996) Interrelationship of major histocompatibility complex class II alleles and autoantibodies in four ethnic groups with various forms of myositis. Arthritis Rheum 39:1507–1518

    Article  PubMed  CAS  Google Scholar 

  10. Chinoy H, Adimulam S, Marriage F et al (2012) Interaction of HLA-DRB1*03 and smoking for the development of anti-Jo-1 antibodies in adult idiopathic inflammatory myopathies: a European-wide case study. Ann Rheum Dis 71:961–965

    Article  PubMed  CAS  Google Scholar 

  11. Limaye V, Luke C, Tucker G et al (2012) The incidence and associations of malignancy in a large cohort of patients with biopsy-determined idiopathic inflammatory myositis. Rheumatol Int (im Druck)

  12. Vincze M, Danko K (2012) Idiopathic inflammatory myopathies. Best Pract Res Clin Rheumatol 26:25–45

    Article  PubMed  CAS  Google Scholar 

  13. Chinoy H, Fertig N, Oddis CV et al (2007) The diagnostic utility of myositis autoantibody testing for predicting the risk of cancer-associated myositis. Ann Rheum Dis 66:1345–1349

    Article  PubMed  Google Scholar 

  14. Fujimoto M, Hamaguchi Y, Kaji K et al (2012) Myositis-specific anti-155/140 autoantibodies target transcription intermediary factor 1 family proteins. Arthritis Rheum 64:513–522

    Article  PubMed  CAS  Google Scholar 

  15. Dalakas MC (1991) Polymyositis, dermatomyositis and inclusion-body myositis. N Engl J Med 325:1487–1498

    Article  PubMed  CAS  Google Scholar 

  16. Soejima M, Kang EH, Gu X et al (2011) Role of innate immunity in a murine model of histidyl-transfer RNA synthetase (Jo-1)-mediated myositis. Arthritis Rheum 63:479–487

    Article  PubMed  CAS  Google Scholar 

  17. Hervier B, Devilliers H, Stanciu R et al (2012) Hierarchical cluster and survival analyses of antisynthetase syndrome: phenotype and outcome are correlated with anti-tRNA synthetase antibody specificity. Autoimmun Rev 12:210–217

    Article  PubMed  CAS  Google Scholar 

  18. Ingegnoli F, Lubatti C, Ingegnoli A et al (2012) Interstitial lung disease outcomes by high-resolution computed tomography (HRCT) in Anti-Jo1 antibody-positive polymyositis patients: a single centre study and review of the literature. Autoimmun Rev 11:335–340

    Article  PubMed  Google Scholar 

  19. Bernstein RM, Morgan SH, Chapman J et al (1984) Anti-Jo-1 antibody: a marker for myositis with interstitial lung disease. Br Med J (Clin Res Ed) 289:151–152

    Article  Google Scholar 

  20. Venables PJ (1997) Antibodies to Jo-1 and Ro-52: Why do they go together? Clin Exp Immunol 109:403–405

    Article  PubMed  CAS  Google Scholar 

  21. Mozaffar T, Pestronk A (2000) Myopathy with anti-Jo-1 antibodies: pathology in perimysium and neighbouring muscle fibres. J Neurol Neurosurg Psychiatry 68:472–478

    Article  PubMed  CAS  Google Scholar 

  22. Brouwer R, Hengstman GJ, Vree Egberts W et al (2001) Autoantibody profiles in the sera of European patients with myositis. Ann Rheum Dis 60:116–123

    Article  PubMed  CAS  Google Scholar 

  23. Targoff IN (1990) Autoantibodies to aminoacyl-transfer RNA synthetases for isoleucine and glycine. Two additional synthetases are antigenic in myositis. J Immunol 144:1737–1743

    PubMed  CAS  Google Scholar 

  24. Friedman AW, Targoff IN, Arnett FC (1996) Interstitial lung disease with autoantibodies against aminoacyl-tRNA synthetases in the absence of clinically apparent myositis. Semin Arthritis Rheum 26:459–467

    Article  PubMed  CAS  Google Scholar 

  25. Yamasaki Y, Yamada H, Nozaki T et al (2006) Unusually high frequency of autoantibodies to PL-7 associated with milder muscle disease in Japanese patients with polymyositis/dermatomyositis. Arthritis Rheum 54:2004–2009

    Article  PubMed  CAS  Google Scholar 

  26. Labirua-Iturburu A, Selva-O’Callaghan A, Vincze M et al (2012) Anti-PL-7 (anti-threonyl-tRNA synthetase) antisynthetase syndrome: clinical manifestations in a series of patients from a European multicenter study (EUMYONET) and review of the literature. Medicine (Baltimore) 91:206–211

  27. Bunn CC, Bernstein RM, Mathews MB (1986) Autoantibodies against alanyl-tRNA synthetase and tRNAAla coexist and are associated with myositis. J Exp Med 163:1281–1291

    Article  PubMed  CAS  Google Scholar 

  28. Kalluri M, Sahn SA, Oddis CV et al (2009) Clinical profile of anti-PL-12 autoantibody. Cohort study and review of the literature. Chest 135:1550–1556

    Article  PubMed  CAS  Google Scholar 

  29. Hirakata M, Suwa A, Nagai S et al (1999) Anti-KS: identification of autoantibodies to asparaginyl-transfer RNA synthetase associated with interstitial lung disease. J Immunol 162:2315–2320

    PubMed  CAS  Google Scholar 

  30. Hirakata M, Suwa A, Takada T et al (2007) Clinical and immunogenetic features of patients with autoantibodies to asparaginyl-transfer RNA synthetase. Arthritis Rheum 56:1295–1303

    Article  PubMed  CAS  Google Scholar 

  31. Mathews MB, Reichlin M, Hughes GR et al (1984) Anti-threonyl-tRNA synthetase, a second myositis-related autoantibody. J Exp Med 160:420–434

    Article  PubMed  CAS  Google Scholar 

  32. Betteridge ZE, Gunawardena H, McHugh NJ (2011) Novel autoantibodies and clinical phenotypes in adult and juvenile myositis. Arthritis Res Ther 13:209

    Article  PubMed  Google Scholar 

  33. Targoff IN, Reichlin M (1985) The association between Mi-2 antibodies and dermatomyositis. Arthritis Rheum 28:796–803

    Article  PubMed  CAS  Google Scholar 

  34. Gunawardena H, Wedderburn LR, North J et al (2008) Clinical associations of autoantibodies to a p155/140 kDa doublet protein in juvenile dermatomyositis. Rheumatology (Oxford) 47:324–328

    Google Scholar 

  35. Gunawardena H, Betteridge ZE, McHugh NJ (2009) Myositis-specific autoantibodies: their clinical and pathogenic significance in disease expression. Rheumatology (Oxford) 48:607–612

    Google Scholar 

  36. Mimori T, Akizuki M, Yamagata H et al (1981) Characterization of a high molecular weight acidic nuclear protein recognized by autoantibodies in sera from patients with polymyositis-scleroderma overlap. J Clin Invest 68:611–620

    Article  PubMed  CAS  Google Scholar 

  37. Lakota K, Thallinger GG, Sodin-Semrl S et al (2012) International cohort study of 73 anti-Ku-positive patients: association of p70/p80 anti-Ku antibodies with joint/bone features and differentiation of disease populations by using principal-components analysis. Arthritis Res Ther 14:R2

    Article  PubMed  CAS  Google Scholar 

  38. Ichimura Y, Matsushita T, Hamaguchi Y et al (2012) Anti-NXP2 autoantibodies in adult patients with idiopathic inflammatory myopathies: possible association with malignancy. Ann Rheum Dis 71:710–713

    Article  PubMed  CAS  Google Scholar 

  39. Betteridge ZE, Gunawardena H, McHugh NJ (2009) Pathogenic mechanisms of disease in myositis: autoantigens as clues. Curr Opin Rheumatol 21:604–609

    Article  PubMed  CAS  Google Scholar 

  40. Wolfe JF, Adelstein E, Sharp GC (1977) Antinuclear antibody with distinct specificity for polymyositis. J Clin Invest 59:176–178

    Article  PubMed  CAS  Google Scholar 

  41. Reeves WH, Nigam SK, Blobel G (1986) Human autoantibodies reactive with the signal-recognition particle. Proc Natl Acad Sci U S A 83:9507–9511

    Article  PubMed  CAS  Google Scholar 

  42. Peisley A, Lin C, Wu B et al (2011) Cooperative assembly and dynamic disassembly of MDA5 filaments for viral dsRNA recognition. Proc Natl Acad Sci U S A 108:21010–21015

    Article  PubMed  CAS  Google Scholar 

  43. Sato S, Kuwana M, Fujita T et al (2012) Anti-CADM-140/MDA5 autoantibody titer correlates with disease activity and predicts disease outcome in patients with dermatomyositis and rapidly progressive interstitial lung disease. Mod Rheumatol (im Druck)

  44. Nakashima R, Imura Y, Kobayashi S et al (2010) The RIG-I-like receptor IFIH1/MDA5 is a dermatomyositis-specific autoantigen identified by the anti-CADM-140 antibody. Rheumatology (Oxford) 49:433–440

    Google Scholar 

  45. Stuhlmuller B, Jerez R, Hausdorf G et al (1996) Novel autoantibodies against muscle-cell membrane proteins in patients with myositis. Arthritis Rheum 39:1860–1868

    Article  PubMed  CAS  Google Scholar 

  46. Mammen AL, Chung T, Christopher-Stine L et al (2011) Autoantibodies against 3-hydroxy-3-methylglutaryl-coenzyme A reductase in patients with statin-associated autoimmune myopathy. Arthritis Rheum 63:713–721

    Article  PubMed  CAS  Google Scholar 

  47. Padala S, Thompson PD (2012) Statins as a possible cause of inflammatory and necrotizing myopathies. Atherosclerosis 222:15–21

    Article  PubMed  CAS  Google Scholar 

  48. Christopher-Stine L, Casciola-Rosen LA, Hong G et al (2010) A novel autoantibody recognizing 200-kd and 100-kd proteins is associated with an immune-mediated necrotizing myopathy. Arthritis Rheum 62:2757–2766

    Article  PubMed  CAS  Google Scholar 

  49. Salajegheh M, Lam T, Greenberg SA (2011) Autoantibodies against a 43 KDa muscle protein in inclusion body myositis. PLoS One 6:e20266

    Article  PubMed  CAS  Google Scholar 

  50. Selva-O’Callaghan A, Mijares-Boeckh-Behrens T, Labrador-Horrillos M et al (2003) Anti-PM-Scl antibodies in a patient with inclusion body myositis. Rheumatology (Oxford) 42:1016–1018

    Google Scholar 

  51. Greenberg SA, Bradshaw EM, Pinkus JL et al (2005) Plasma cells in muscle in inclusion body myositis and polymyositis. Neurology 65:1782–1787

    Article  PubMed  CAS  Google Scholar 

  52. Bradshaw EM, Orihuela A, McArdel SL et al (2007) A local antigen-driven humoral response is present in the inflammatory myopathies. J Immunol 178:547–556

    PubMed  CAS  Google Scholar 

  53. Salajegheh M, Pinkus JL, Amato AA et al (2010) Permissive environment for B-cell maturation in myositis muscle in the absence of B-cell follicles. Muscle Nerve 42:576–583

    Article  PubMed  Google Scholar 

  54. Labrador-Horrillo M, Martinez MA, Selva-O’Callaghan A et al (2012) Anti-TIF1gamma antibodies (anti-p155) in adult patients with dermatomyositis: comparison of different diagnostic assays. Ann Rheum Dis 71:993–996

    Article  PubMed  CAS  Google Scholar 

  55. Park MC, Kang T, Jin D et al (2012) Secreted human glycyl-tRNA synthetase implicated in defense against ERK-activated tumorigenesis. Proc Natl Acad Sci U S A 109:E640–E647

    PubMed  CAS  Google Scholar 

  56. Stojanov L, Satoh M, Hirakata M et al (1996) Correlation of antisynthetase antibody levels with disease course in a patient with interstitial lung disease and elevated muscle enzymes. J Clin Rheumatol 2:89–95

    Article  PubMed  CAS  Google Scholar 

  57. Howard OM, Dong HF, Yang D et al (2002) Histidyl-tRNA synthetase and asparaginyl-tRNA synthetase, autoantigens in myositis, activate chemokine receptors on T lymphocytes and immature dendritic cells. J Exp Med 196:781–791

    Article  PubMed  CAS  Google Scholar 

  58. Raben N, Nichols R, Dohlman J et al (1994) A motif in human histidyl-tRNA synthetase which is shared among several aminoacyl-tRNA synthetases is a coiled-coil that is essential for enzymatic activity and contains the major autoantigenic epitope. J Biol Chem 269:24277–24283

    PubMed  CAS  Google Scholar 

  59. Walker EJ, Jeffrey PD (1988) Sequence homology between encephalomyocarditis virus protein VPI and histidyl-tRNA synthetase supports a hypothesis of molecular mimicry in polymyositis. Med Hypotheses 25:21–25

    Article  PubMed  CAS  Google Scholar 

  60. Dewan V, Wei M, Kleiman L et al (2012) Dual role for motif 1 residues of human lysyl-tRNA synthetase in dimerization and packaging into HIV-1. J Biol Chem 287:41955–41962

    Article  PubMed  CAS  Google Scholar 

  61. Nagaraju K (2001) Update on immunopathogenesis in inflammatory myopathies. Curr Opin Rheumatol 13:461–468

    Article  PubMed  CAS  Google Scholar 

  62. Arahata K, Engel AG (1988) Monoclonal antibody analysis of mononuclear cells in myopathies. V: Identification and quantitation of T8 + cytotoxic and T8 + suppressor cells. Ann Neurol 23:493–499

    Article  PubMed  CAS  Google Scholar 

  63. Michels H, Burmester GR, Buttgereit F (2005) Intravenous immunoglobulins in chronic idiopathic myositis. Z Rheumatol 64:102–110

    Article  PubMed  CAS  Google Scholar 

  64. Hak AE, Paepe B de, Bleecker JL de et al (2011) Dermatomyositis and polymyositis: new treatment targets on the horizon. Neth J Med 69:410–421

    PubMed  CAS  Google Scholar 

  65. Jain A, Sharma MC, Sarkar C et al (2009) Increased expression of cell adhesion molecules in inflammatory myopathies: diagnostic utility and pathogenetic insights. Folia Neuropathol 47:33–42

    PubMed  CAS  Google Scholar 

  66. Englund P, Lindroos E, Nennesmo I et al (2001) Skeletal muscle fibers express major histocompatibility complex class II antigens independently of inflammatory infiltrates in inflammatory myopathies. Am J Pathol 159:1263–1273

    Article  PubMed  CAS  Google Scholar 

  67. Waschbisch A, Wintterle S, Lochmuller H et al (2008) Human muscle cells express the costimulatory molecule B7-H3, which modulates muscle-immune interactions. Arthritis Rheum 58:3600–3608

    Article  PubMed  CAS  Google Scholar 

  68. Baek A, Park HJ, Na SJ et al (2012) The expression of BAFF in the muscles of patients with dermatomyositis. J Neuroimmunol 249:96–100

    Article  PubMed  CAS  Google Scholar 

  69. Sugiura T, Kawaguchi Y, Harigai M et al (2000) Increased CD40 expression on muscle cells of polymyositis and dermatomyositis: role of CD40-CD40 ligand interaction in IL-6, IL-8, IL-15, and monocyte chemoattractant protein-1 production. J Immunol 164:6593–6600

    PubMed  CAS  Google Scholar 

  70. Tournadre A, Lenief V, Miossec P (2010) Expression of Toll-like receptor 3 and Toll-like receptor 7 in muscle is characteristic of inflammatory myopathy and is differentially regulated by Th1 and Th17 cytokines. Arthritis Rheum 62:2144–2151

    PubMed  CAS  Google Scholar 

  71. Okiyama N, Sugihara T, Iwakura Y et al (2009) Therapeutic effects of interleukin-6 blockade in a murine model of polymyositis that does not require interleukin-17 A. Arthritis Rheum 60:2505–2512

    Article  PubMed  CAS  Google Scholar 

  72. Rider LG, Miller FW (2010) Mast cells and type I interferon responses in the skin of patients with juvenile dermatomyositis: Are current therapies just scratching the surface? Arthritis Rheum 62:2619–2622

    Article  PubMed  Google Scholar 

  73. Shrestha S, Wershil B, Sarwark JF et al (2010) Lesional and nonlesional skin from patients with untreated juvenile dermatomyositis displays increased numbers of mast cells and mature plasmacytoid dendritic cells. Arthritis Rheum 62:2813–2822

    Article  PubMed  Google Scholar 

  74. Siren J, Pirhonen J, Julkunen I et al (2005) IFN-alpha regulates TLR-dependent gene expression of IFN-alpha, IFN-beta, IL-28, and IL-29. J Immunol 174:1932–1937

    PubMed  CAS  Google Scholar 

  75. Raju R, Vasconcelos O, Granger R et al (2003) Expression of IFN-gamma-inducible chemokines in inclusion body myositis. J Neuroimmunol 141:125–131

    Article  PubMed  CAS  Google Scholar 

  76. De Paepe B, De Keyzer K, Martin JJ et al (2005) Alpha-chemokine receptors CXCR1–3 and their ligands in idiopathic inflammatory myopathies. Acta Neuropathol 109:576–582

    Article  Google Scholar 

  77. Salti SM, Hammelev EM, Grewal JL et al (2011) Granzyme B regulates antiviral CD8 + T cell responses. J Immunol 187:6301–6309

    Article  PubMed  CAS  Google Scholar 

  78. Dalakas MC, Illa I (1995) Common variable immunodeficiency and inclusion body myositis: a distinct myopathy mediated by natural killer cells. Ann Neurol 37:806–810

    Article  PubMed  CAS  Google Scholar 

  79. Marie I (2012) Morbidity and mortality in adult polymyositis and dermatomyositis. Curr Rheumatol Rep 14:275–285

    Article  PubMed  CAS  Google Scholar 

  80. Tsutsumi S, Ohga S, Nomura A et al (2002) CD4-CD8-T-cell polymyositis in a patient with chronic active Epstein-Barr virus infection. Am J Hematol 71:211–215

    Article  PubMed  Google Scholar 

  81. Crum-Cianflone NF (2008) Bacterial, fungal, parasitic, and viral myositis. Clin Microbiol Rev 21:473–494

    Article  PubMed  Google Scholar 

  82. El-Beshbishi SN, Ahmed NN, Mostafa SH et al (2012) Parasitic infections and myositis. Parasitol Res 110:1–18

    Article  PubMed  Google Scholar 

  83. Pender MP (2012) CD8 + T-cell deficiency, Epstein-Barr virus infection, vitamin D deficiency, and steps to autoimmunity: a unifying hypothesis. Autoimmune Dis 2012:189096

    PubMed  Google Scholar 

  84. Borhani-Haghighi A, Lankarani KB (2011) Swine flu (H1N1) infection among patients with neurologic disorders. A review of published evidence. Neurosciences (Riyadh) 16:213–216

    Google Scholar 

  85. Dalakas MC, Rakocevic G, Shatunov A et al (2007) Inclusion body myositis with human immunodeficiency virus infection: four cases with clonal expansion of viral-specific T cells. Ann Neurol 61:466–475

    Article  PubMed  CAS  Google Scholar 

  86. Kallajoki M, Hyypia T, Halonen P et al (1991) Inclusion body myositis and paramyxoviruses. Hum Pathol 22:29–32

    Article  PubMed  CAS  Google Scholar 

  87. Del Bello A, Arne-Bes MC, Lavayssiere L et al (2012) Hepatitis E virus-induced severe myositis. J Hepatol 57:1152–1153

    Article  Google Scholar 

  88. Hollenstein U, Thalhammer F, Burgmann H (1998) Disseminated intravascular coagulation (DIC) and rhabdomyolysis in fulminant varicella infection – case report and review of the literature. Infection 26:306–308

    Article  PubMed  CAS  Google Scholar 

  89. Ascherman DP (2012) Animal models of inflammatory myopathy. Curr Rheumatol Rep 14:257–263

    Article  PubMed  CAS  Google Scholar 

  90. Yousef GE, Isenberg DA, Mowbray JF (1990) Detection of enterovirus specific RNA sequences in muscle biopsy specimens from patients with adult onset myositis. Ann Rheum Dis 49:310–315

    Article  PubMed  CAS  Google Scholar 

  91. Guldner HH, Netter HJ, Szostecki C et al (1990) Human anti-p68 autoantibodies recognize a common epitope of U1 RNA containing small nuclear ribonucleoprotein and influenza B virus. J Exp Med 171:819–829

    Article  PubMed  CAS  Google Scholar 

  92. Feng Q, Hato SV, Langereis MA et al (2012) MDA5 Detects the double-stranded RNA replicative form in picornavirus-infected cells. Cell Rep 2:1187–1196

    Article  PubMed  CAS  Google Scholar 

  93. Yoneyama M, Kikuchi M, Natsukawa T et al (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5:730–737

    Article  PubMed  CAS  Google Scholar 

  94. Hiscott J, Pitha P, Genin P et al (1999) Triggering the interferon response: the role of IRF-3 transcription factor. J Interferon Cytokine Res 19:1–13

    Article  PubMed  CAS  Google Scholar 

  95. Lin R, Heylbroeck C, Genin P et al (1999) Essential role of interferon regulatory factor 3 in direct activation of RANTES chemokine transcription. Mol Cell Biol 19:959–966

    PubMed  CAS  Google Scholar 

  96. De Bleecker JL, Engel AG (1994) Expression of cell adhesion molecules in inflammatory myopathies and Duchenne dystrophy. J Neuropathol Exp Neurol 53:369–376

    Article  Google Scholar 

  97. De Bleecker JL, Engel AG (1995) Immunocytochemical study of CD45 T cell isoforms in inflammatory myopathies. Am J Pathol 146:1178–1187

    Google Scholar 

  98. Dezzutti CS, Rudolph DL, Lal RB (1995) Infection with human T-lymphotropic virus types I and II results in alterations of cellular receptors, including the up-modulation of T-cell counterreceptors CD40, CD54, and CD80 (B7-1). Clin Diagn Lab Immunol 2:349–355

    PubMed  CAS  Google Scholar 

  99. Prince HE, York J, Owen SM et al (1995) Spontaneous proliferation of memory (CD45RO+) and naive (CD45RO–) subsets of CD4 cells and CD8 cells in human T lymphotropic virus (HTLV) infection: distinctive patterns for HTLV-I versus HTLV-II. Clin Exp Immunol 102:256–261

    Article  PubMed  CAS  Google Scholar 

  100. Fuchs R, Blaas D (2010) Uncoating of human rhinoviruses. Rev Med Virol 20:281–297

    Article  PubMed  CAS  Google Scholar 

  101. Zu N, Zhao H, Xu B et al (2011) The expression of the type I interferon system in muscle and lung of autoimmune myositis rat model. Zhonghua Nei Ke Za Zhi 50:868–872

    PubMed  CAS  Google Scholar 

  102. Salajegheh M, Kong SW, Pinkus JL et al (2010) Interferon-stimulated gene 15 (ISG15) conjugates proteins in dermatomyositis muscle with perifascicular atrophy. Ann Neurol 67:53–63

    Article  PubMed  CAS  Google Scholar 

  103. Garcia-Lozano JR, Gonzalez-Escribano MF, Rodriguez R et al (1998) Detection of anti-PL-12 autoantibodies by ELISA using a recombinant antigen; study of the immunoreactive region. Clin Exp Immunol 114:161–165

    Article  PubMed  CAS  Google Scholar 

  104. McCarty GA (1986) Autoantibodies and their relation to rheumatic diseases. Med Clin North Am 70:237–261

    PubMed  CAS  Google Scholar 

  105. Yamagata H, Akizuki M, Tojo T et al (1986) Anti-Ro/SSA and -La/SSB antibodies in patients with connective tissue diseases. Scand J Rheumatol (Suppl 61):98–101

    Google Scholar 

  106. Rutjes SA, Vree Egberts WT, Jongen P et al (1997) Anti-Ro52 antibodies frequently co-occur with anti-Jo-1 antibodies in sera from patients with idiopathic inflammatory myopathy. Clin Exp Immunol 109:32–40

    Article  PubMed  CAS  Google Scholar 

  107. Gunawardena H, Wedderburn LR, Chinoy H et al (2009) Autoantibodies to a 140-kd protein in juvenile dermatomyositis are associated with calcinosis. Arthritis Rheum 60:1807–1814

    Article  PubMed  CAS  Google Scholar 

  108. Bringmann P, Rinke J, Appel B et al (1983) Purification of snRNPs U1, U2, U4, U5 and U6 with 2,2,7-trimethylguanosine-specific antibody and definition of their constituent proteins reacting with anti-Sm and anti-(U1)RNP antisera. EMBO J 2:1129–1135

    PubMed  CAS  Google Scholar 

Download references

Danksagung

Die Arbeit entstand im Rahmen des europäischen Förderprogramms (EuMyonet). Bei Herrn Prof. A. Engelhardt und Herrn Prof. W. Stenzel bedanken wir uns für die Bereitstellung der histologischen Bilder und für die Elektronenmikroskopaufnahme.

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seine Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Stuhlmüller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stuhlmüller, B., Feist, E., Häupl, T. et al. Neues zur Pathogenese der Myositiden. Z. Rheumatol. 72, 209–219 (2013). https://doi.org/10.1007/s00393-012-1078-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-012-1078-5

Schlüsselwörter

Keywords

Navigation