Skip to main content
Log in

Neue pathophysiologische Stoffwechselwege in der Osteoporose

Zukünftige innovative Therapieansätze?

New pathophysological relevant metabolic pathways in osteoporosis

Future innovative therapies?

  • Leitthema
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Zusammenfassung

Die Osteoporose ist durch geringe Knochendichte und mikroarchitektonische Veränderungen gekennzeichnet. Dies führt zur verminderten knöchernen Stabilität und somit zur erhöhten Anfälligkeit für Frakturen. Der Knochenumbau beim gesunden Menschen findet durch ein ausgeglichenes Verhältnis von Knochenresorption zu Knochenaufbau statt. Auf zellulärem Niveau wird dieser Prozess über die Osteoklasten- und Osteoblastenaktivität reguliert. Bei Verlust der Knochendichte besteht ein Ungleichgewicht auf Seiten der Aktivierung von Osteoklasten. Die Osteoklastenaktivierung ist daher das Ziel vieler Untersuchungen. So werden z. B. die Einflüsse von Östrogen, Wnt und dem RANK/RANKL/OPG-System untersucht. Letztere sind aktiv an der Reifung und Funktion von Osteoklasten beteiligt und scheinen eine zentrale Rolle bezüglich der meisten pathophysiologischen Mechanismen in der Osteoporose einzunehmen.

Abstract

Osteoporosis is characterized by low bone mass and by changes in the microarchitecture of the bone. This leads to reduced bone stability and altered suscebtibility to fractures. Bone remodelling in healthy persons is characterized by a balance between bone resorption and bone formation. At the cellular level, bone remodelling is regulated by osteoclast and osteoblast activity. During bone loss, there is an imbalance, osteoclast activity being more pronounced. Therefore, the influende of estrogens, Wnt and the RANK/RANKL/OPG system on osteoclastogenesis and osteoclast activity has been investigated. The RANK/RANKL/OPG-System is actively involved in the differentiation and function of osteoclasts and seems to play a central part in most pathophysiological mechanisms that are active in osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Bord S, Ireland DC, Beavan SR, Compston JE (2003) The effects of estrogen on osteoprotegerin, RANKL, and estrogen receptor expression in human osteoblasts. Bone 32: 136–141

    Article  PubMed  Google Scholar 

  2. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423: 337–342

    Article  PubMed  Google Scholar 

  3. Catrina AI, af Klint E, Ernestam S et al. (2006) Anti-tumor necrosis factor therapy increases synovial osteoprotegerin expression in rheumatoid arthritis. Arthritis Rheum 54: 76–81

    Article  PubMed  Google Scholar 

  4. Dobnig H, Hofbauer LC, Viereck V et al. (2006) Changes in the RANK ligand/osteoprotegerin system are correlated to changes in bone mineral density in bisphosphonate-treated osteoporotic patients. Osteoporos Int 17: 693–703

    Article  PubMed  Google Scholar 

  5. Ebeling PR (2006) Editorial: inhibin in bone – new tricks for an old dog. J Clin Endocrinol Metab 91: 1669–1670

    Article  PubMed  Google Scholar 

  6. Hofbauer LC (2006) Pathophysiology of RANK ligand (RANKL) and osteoprotegerin (OPG). Ann Endocrinol (Paris) 67: 139–141

    Google Scholar 

  7. Hofbauer LC, Schoppet M (2004) Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. JAMA 292: 490–495

    Article  PubMed  Google Scholar 

  8. Kamijo S, Nakajima A, Ikeda K et al. (2006) Amelioration of bone loss in collagen-induced arthritis by neutralizing anti-RANKL monoclonal antibody. Biochem Biophys Res Commun 347: 124–132

    Article  PubMed  Google Scholar 

  9. Kananen K, Volin L, Laitinen K et al. (2006) Serum osteoprotegerin and receptor activator of nuclear factor-kappaB ligand (RANKL) concentrations in allogeneic stem cell transplant-recipients: a role in bone loss? Osteoporos Int 17: 724–730

    Article  PubMed  Google Scholar 

  10. Kostenuik PJ (2005) Osteoprotegerin and RANKL regulate bone resorption, density, geometry and strength. Curr Opin Pharmacol 5: 618–625

    Article  PubMed  Google Scholar 

  11. Krishnan V, Bryant HU, Macdougald OA (2006) Regulation of bone mass by Wnt signaling. J Clin Invest 116: 1202–1209

    Article  PubMed  Google Scholar 

  12. Locklin RM, Khosla S, Turner RT, Riggs BL (2003) Mediators of the biphasic responses of bone to intermittent and continuously administered parathyroid hormone. J Cell Biochem 89: 180–190

    Article  PubMed  Google Scholar 

  13. Mazziotti G, Angeli A, Bilezikian JP et al. (2006) Glucocorticoid-induced osteoporosis: an update. Trends Endocrinol Metab 17: 144–149

    Article  PubMed  Google Scholar 

  14. McClung MR (2006) Inhibition of RANKL as a treatment for osteoporosis: preclinical and early clinical studies. Curr Osteoporos Rep 4: 28–33

    PubMed  Google Scholar 

  15. McClung MR, Lewiecki EM, Cohen SB et al. (2006) Denosumab in postmenopausal women with low bone mineral density. N Engl J Med 354: 821–831

    Article  PubMed  Google Scholar 

  16. Neumann E, Gay S, Muller-Ladner U (2005) The RANK/RANKL/osteoprotegerin system in rheumatoid arthritis: new insights from animal models. Arthritis Rheum 52: 2960–2967

    Article  PubMed  Google Scholar 

  17. Perrien DS, Achenbach SJ, Bledsoe SE et al. (2006) Bone turnover across the menopause transition: correlations with inhibins and follicle-stimulating hormone. J Clin Endocrinol Metab 91: 1848–1854

    Article  PubMed  Google Scholar 

  18. Sambrook P, Cooper C (2006) Osteoporosis. Lancet 367: 2010–2018

    Article  PubMed  Google Scholar 

  19. Shevde NK, Bendixen AC, Dienger KM, Pike JW (2000) Estrogens suppress RANK ligand-induced osteoclast differentiation via a stromal cell independent mechanism involving c-Jun repression. Proc Natl Acad Sci U S A 97: 7829–7834

    Article  PubMed  Google Scholar 

  20. Spohn G, Schwarz K, Maurer P et al. (2005) Protection against osteoporosis by active immunization with TRANCE/RANKL displayed on virus-like particles. J Immunol 175: 6211–6218

    PubMed  Google Scholar 

  21. Srivastava S, Toraldo G, Weitzmann MN et al. (2001) Estrogen decreases osteoclast formation by down-regulating receptor activator of NF-kappa B ligand (RANKL)-induced JNK activation. J Biol Chem 276: 8836–8840

    Article  PubMed  Google Scholar 

  22. Vis M, Haavardsholm EA, Haugeberg G et al. (2006) Evaluation of bone mineral density, bone metabolism, osteoprotegerin and RANKL serum levels during treatment with infliximab in patients with rheumatoid arthritis. Ann Rheum Dis

  23. Wada T, Nakashima T, Hiroshi N, Penninger JM (2006) RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med 12: 17–25

    Article  PubMed  Google Scholar 

  24. Xu D, Wang S, Liu W et al. (2006) A novel receptor activator of NF-kappaB (RANK) cytoplasmic motif plays an essential role in osteoclastogenesis by committing macrophages to the osteoclast lineage. J Biol Chem 281: 4678–4690

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Neumann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neumann, E. Neue pathophysiologische Stoffwechselwege in der Osteoporose. Z. Rheumatol. 65, 400–406 (2006). https://doi.org/10.1007/s00393-006-0086-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-006-0086-8

Schlüsselwörter

Keywords

Navigation