Skip to main content
Log in

Assessing fall risk using wearable sensors: a practical discussion

A review of the practicalities and challenges associated with the use of wearable sensors for quantification of fall risk in older people

Bestimmung des Sturzrisikos mit tragbaren Sensoren: eine praxisnahe Diskussion

Übersicht über die praktischen Belange und Herausforderungen bei Verwendung tragbarer Sensoren zur Quantifizierung des Sturzrisikos für Ältere

  • Beiträge zum Themenschwerpunkt
  • Published:
Zeitschrift für Gerontologie und Geriatrie Aims and scope Submit manuscript

Abstract

Identification of older people most at risk of falling may facilitate early preventative intervention to reduce the likelihood of falls occurring. While many clinical fall risk assessment techniques exist, they often require subjective assessor interpretation, or are not appropriate for unsupervised screening of larger populations owing to a number of issues including safety, ability to reliably perform the assessment, and requirements for unwieldy apparatus. Researchers have more recently attempted to address some of these deficits by instrumenting new or existing physical fall risk assessments with wearable motion sensors to make such assessments more objective, quicker to administer, and potentially more appropriate for deployment for unsupervised use in the community. The objective of this paper is to discuss various practical questions involving sensor-based fall risk assessment (SFRA). Many of the issues discussed contribute to answering the important question of whether SFRA should or can be used in either a supervised or an unsupervised manner, and what possible deployment scenarios exist for it.

Zusammenfassung

Die Identifikation von älteren Personen mit hohem Sturzrisiko ermöglicht rechtzeitige Präventionsmaßnahmen zur Verringerung der Zahl von Sturzereignissen. Viele der existierenden klinischen Verfahren zur Bestimmung des Sturzrisikos beinhalten die subjektive Interpretation des Untersuchers und sind aus Gründen der Sicherheit, der verlässlichen Durchführbarkeit oder notwendiger apparativer Voraussetzungen nicht für eine Anwendung bei großen Kohorten im nichtklinischen Umfeld geeignet. Wissenschaftler versuchen daher seit einiger Zeit, einige der genannten Defizite durch die Ausstattung mit tragbaren Bewegungssensoren bei der Durchführung existierender oder neuer Verfahren auszugleichen. Diese sollen das Verfahren objektiver, einfacher anwendbar und für die potenzielle nichtklinische Verwendung geeigneter gestalten. Ziel dieses Beitrags ist die Diskussion praktischer Fragen zur Anwendung der sensorbasierten Sturzrisikobestimmung. Besonderes Augenmerk wird auf die wichtigen Fragen gelegt, ob ein solches Verfahren supervidiert oder nicht supervidiert durchgeführt werden kann/sollte und welche möglichen Einsatzszenarien hierfür bestehen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. American Geriatrics Society, the British Geriatrics Society, and the American Academy of Orthopaedic Surgeons (2009) Prevention of falls in older persons—AGS BGS clinical practice guideline. In: http://www.medcats.com/FALLS/frameset.htm. Accessed 25 July 2012

  2. Australian Commission on Safety and Quality in Health Care (2009) Preventing falls and harm from falls in older people: best practice guidelines for Australian community care. Commonwealth Government, Canberra, Australian Capital Territory

  3. Beauchet O, Annweiler C, Allali G et al (2010) Dual-task related gait changes and risk of falls: a systematic review. Neurology 74:A532–A532

    Article  Google Scholar 

  4. Bergmann J, McGregor A (2011) Body-worn sensor design: what do patients and clinicians want? Ann Biomed Eng 39:2299–2312

    Article  PubMed  CAS  Google Scholar 

  5. Bohannon RW (2006) Reference values for the timed up and go test: a descriptive meta-analysis. J Geriatr Phys Ther 29:64–68

    Article  PubMed  Google Scholar 

  6. Gates S, Smith LA, Fisher JD et al (2008) Systematic review of accuracy of screening instruments for predicting fall risk among independently living older adults. J Rehabil Res Dev 45:1105–1116

    Article  PubMed  Google Scholar 

  7. Graham JE, Ostir GV, Fisher SR et al (2008) Assessing walking speed in clinical research: a systematic review. J Eval Clin Pract 14:552–562

    Article  PubMed  Google Scholar 

  8. Greene BR, Doheny EP, Walsh C et al (2012) Evaluation of falls risk in community-dwelling older adults using body-worn sensors. Gerontology 58:472–480

    Article  PubMed  Google Scholar 

  9. Haines TP, Hill K, Walsh W et al (2007) Design-related bias in hospital fall risk screening tool predictive accuracy evaluations: systematic review and meta-analysis. J Gerontol A Biol Sci Med Sci 62:664–672

    Article  PubMed  Google Scholar 

  10. Härlein J, Dassen T, Halfens RJG et al (2009) Fall risk factors in older people with dementia or cognitive impairment: a systematic review. J Adv Nurs 65:922–933

    Article  PubMed  Google Scholar 

  11. Hausdorff JM, Rios DA, Edelberg HK (2001) Gait variability and fall risk in community-living older adults: A 1-year prospective study. Arch Phys Med Rehabil 82:1050–1056

    Article  PubMed  CAS  Google Scholar 

  12. Herman T, Giladi N, Hausdorff JM (2011) Properties of the ‘timed up and go’ test: more than meets the eye. Gerontology 57:203–210

    Article  PubMed  Google Scholar 

  13. Kirchhoff M, Melin A (2011) Screening for fall risk in the elderly in the capital rregion of Copenhagen: the need for fall assessment exceeds the present capacity. Dan Med Bull 58:A4324

    PubMed  Google Scholar 

  14. Köpke S, Meyer G (2006) The Tinetti test. Z Gerontol Geriatr 39:288–291

    Article  PubMed  Google Scholar 

  15. Laessoe U, Hoeck HC, Simonsen O et al (2007) Fall risk in an active elderly population—can it be assessed? J Negat Results Biomed 6:2

    Article  PubMed  Google Scholar 

  16. Lamb SE, Jorstad-Stein EC, Hauer K et al (2005) Development of a common outcome data set for fall injury prevention trials: the Prevention of Falls Network Europe consensus. J Am Geriatr Soc 53:1618–1622

    Article  PubMed  Google Scholar 

  17. Liu Y, Redmond SJ, Ning W et al (2011) Spectral analysis of accelerometry signals from a directed-routine for falls-risk estimation. IEEE Trans Biomed Eng 58:2308–2315

    Article  Google Scholar 

  18. Lord SR, Menz HB, Tiedemann A (2003) A physiological profile approach to falls risk assessment and prevention. Phys Ther 83:237–252

    PubMed  Google Scholar 

  19. Marschollek M, Rehwald A, Wolf KH et al (2011) Sensor-based fall risk assessment—an expert ‘to go’. Methods Inf Med 50:420–426

    Article  PubMed  CAS  Google Scholar 

  20. Mathie MJ, Coster ACF, Lovell NH et al (2004) A pilot study of long-term monitoring of human movements in the home using accelerometry. J Telemed Telecare 10:144–151

    Article  PubMed  Google Scholar 

  21. Ni Scanaill C, Garattini C, Greene BR et al (2011) Technology innovation enabling falls risk assessment in a community setting. Ageing Int 36:217–231

    Article  Google Scholar 

  22. Oliver D, Healey F, Haines TP (2010) Preventing falls and fall-related injuries in hospitals. Clin Geriatr Med 26:645–692

    Article  PubMed  Google Scholar 

  23. Oliver D, Healy F (2009) Falls risk prediction tools for hospital inpatients: do they work? Nurs Times 105:18–21

    PubMed  Google Scholar 

  24. Peel NM (2011) Epidemiology of falls in older age. Can J Aging 30:7–19

    Article  Google Scholar 

  25. Perell KL, Nelson A, Goldman RL et al (2001) Fall risk assessment measures: an analytic review. J Gerontol A Biol Sci Med Sci 56:M761–M766

    Article  PubMed  CAS  Google Scholar 

  26. Senden R, Savelberg HHCM, Grimm B et al (2012) Accelerometry-based gait analysis, an additional objective approach to screen subjects at risk for falling. Gait Posture 36:296–300

    Article  PubMed  CAS  Google Scholar 

  27. Shany T, Redmond SJ, Narayanan MR et al (2012) Sensors-based wearable systems for monitoring of human movement and falls. IEEE Sens J 12:658–670

    Article  Google Scholar 

  28. Tiedemann A, Lord SR, Sherrington C (2010) The development and validation of a brief performance-based fall risk assessment tool for use in primary care. J Gerontol A Biol Sci Med Sci 65A:896–903

    Article  Google Scholar 

  29. Tiedemann A, Shimada H, Sherrington C et al (2008) The comparative ability of eight functional mobility tests for predicting falls in community-dwelling older people. Age Ageing 37:430–435

    Article  PubMed  Google Scholar 

  30. Tinetti ME (1986) Performance-oriented assessment of mobility problems in elderly patients. J Am Geriatr Soc 34:119–126

    PubMed  CAS  Google Scholar 

  31. Vellas BJ, Wayne SJ, Romero L et al (1997) One-leg balance is an important predictor of injurious falls in older persons. J Am Geriatr Soc 45:735–738

    PubMed  CAS  Google Scholar 

  32. Yogev-Seligmann G, Hausdorff JM, Giladi N (2008) The role of executive function and attention in gait. Mov Disord 23:329–342

    Article  PubMed  Google Scholar 

  33. Zijlstra W, Aminian K (2007) Mobility assessment in older people: new possibilities and challenges. Eur J Ageing 4:3–12

    Article  Google Scholar 

Download references

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.J. Redmond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shany, T., Redmond, S., Marschollek, M. et al. Assessing fall risk using wearable sensors: a practical discussion. Z Gerontol Geriat 45, 694–706 (2012). https://doi.org/10.1007/s00391-012-0407-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00391-012-0407-2

Keywords

Schlüsselwörter

Navigation