Skip to main content

Advertisement

Log in

Rebuild, restore, reinnervate: do human tissue engineered dermo-epidermal skin analogs attract host nerve fibers for innervation?

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Purpose

Tissue engineered skin substitutes are a promising tool to cover large skin defects, but little is known about reinnervation of transplants. In this experimental study, we analyzed the ingrowth of host peripheral nerve fibers into human tissue engineered dermo-epidermal skin substitutes in a rat model. Using varying cell types in the epidermal compartment, we wanted to assess the influence of epidermal cell types on reinnervation of the substitute.

Methods

We isolated keratinocytes, melanocytes, fibroblasts, and eccrine sweat gland cells from human skin biopsies. After expansion, epidermal cells were seeded on human dermal fibroblast-containing collagen type I hydrogels as follows: (1) keratinocytes only, (2) keratinocytes with melanocytes, (3) sweat gland cells. These substitutes were transplanted into full-thickness skin wounds on the back of immuno-incompetent rats and were analyzed after 3 and 8 weeks. Histological sections were examined with regard to myelinated and unmyelinated nerve fiber ingrowth using markers such as PGP9.5, NF-200, and NF-145.

Results

After 3 weeks, the skin substitutes of all three epidermal cell variants showed no neuronal ingrowth from the host into the transplant. After 8 weeks, we could detect an innervation of all three types of skin substitutes. However, the nerve fibers were restricted to the dermal compartment and we could not find any unmyelinated fibers in the epidermis. Furthermore, there was no distinct difference between the constructs resulting from the different cell types used to generate an epidermis.

Conclusion

Our human tissue engineered dermo-epidermal skin substitutes demonstrate a host-derived innervation of the dermal compartment as early as 8 weeks after transplantation. Thus, our substitutes apparently have the capacity to attract nerve fibers from adjacent host tissues, which also grow into grafts and thereby potentially restore skin sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hermanson A, Dalsgaard CJ (1987) Sensory reinnervation and sensibility in skin transplants. Med Biol 65(1):49–52

    PubMed  CAS  Google Scholar 

  2. Altun V, Hakvoort TE, van Zuijlen PP, van der Kwast TH, Prens EP (2001) Nerve outgrowth and neuropeptide expression during the remodeling of human burn wound scars. A 7-month follow-up study of 22 patients. Burns 27(7):717–722

    Article  PubMed  CAS  Google Scholar 

  3. Ward RS, Tucket RP, English KB, Johansson O, Saffle JR (2003) Substance P axons and sensory threshold increase in burn-graft human skin. J Surg Res 118:154–160

    Article  Google Scholar 

  4. Nedelec B, Hou Q, Sohbi I, Choiniüre M, Beauregard G, Dykes RW (2005) Sensory perception and neuroanatomical structures in normal and grafted skin of burn survivors. Burns 31:817–830

    Article  PubMed  Google Scholar 

  5. Anderson JR, Zorbas JS, Phillips JK, Harrison JL, Dawson LF, Bolt SE, Rea SM, Klatte JE, Paus R, Zhu B, Giles NL, Drummond PD, Wood FM, Fear MW (2010) Systemic decreases in cutaneous innervation after burn injury. J Invest Dermatol 130:1948–1951

    Article  PubMed  CAS  Google Scholar 

  6. Anderson JR, Fear MW, Phillips JK, Dawson LF, Wallace H, Wood FM, Rea SM (2011) A preliminary investigation of the reinnervation and return of sensory function in burn patients treated with INTEGRA®. Burns 37(7):1101–1108

    Article  PubMed  Google Scholar 

  7. Pontiggia L, Biedermann T, Meuli M, Widmer D, Böttcher-Haberzeth S, Schiestl C, Schneider J, Braziulis E, Montaño I, Meuli-Simmen C, Reichmann E (2009) Markers to evaluate the quality and self-renewing potential of engineered human skin substitutes in vitro and after transplantation. J Invest Dermatol 129(2):480–490

    Article  PubMed  CAS  Google Scholar 

  8. Biedermann T, Pontiggia L, Böttcher-Haberzeth S, Tharakan S, Braziulis E, Schiestl C, Meuli M, Reichmann E (2010) Human eccrine sweat gland cells can reconstitute a stratified epidermis. J Invest Dermatol 130(8):1996–2009

    Article  PubMed  CAS  Google Scholar 

  9. Kiowski G, Biedermann T, Widmer DS, Civenni G, Burger C, Dummer R, Sommer L, Reichmann E (2012) Engineering melanoma progression in a humanized environment in vivo. J Invest Dermatol 132(1):144–153

    Article  PubMed  CAS  Google Scholar 

  10. Montaño I, Schiestl C, Schneider J, Pontiggia L, Luginbühl JF, Böttcher-Haberzeth S, Biedermann T, Braziulis E, Meuli M, Reichmann E (2010) Formation of human capillaries in vitro: the engineering of pre-vascularized matrices. Tissue Eng Part A 16(1):269–282

    Article  PubMed  Google Scholar 

  11. Böttcher-Haberzeth S, Biedermann T, Pontiggia L, Braziulis E, Schiestl C, Hendriks B, Eichhoff OM, Widmer DS, Meuli-Simmen C, Meuli M, Reichmann E (2012) Human eccrine sweat gland cells turn into melanin-uptaking keratinocytes in stratifying dermo-epidermal skin substitutes. J Invest Dermatol. doi:10.1038/jid.2012.290

  12. Schneider J, Biedermann T, Widmer D, Montano I, Meuli M, Reichmann E, Schiestl C (2009) Matriderm versus Integra: a comparative experimental study. Burns 35(1):51–57

    Article  PubMed  Google Scholar 

  13. Böttcher-Haberzeth S, Biedermann T, Schiestl C, Hartmann-Fritsch F, Schneider J, Reichmann E, Meuli M (2012) Matriderm® 1 mm versus Integra® Single Layer 1.3 mm for one-step closure of full thickness skin defects: a comparative experimental study in rats. Pediatr Surg Int 28(2):171–177

    Article  PubMed  Google Scholar 

  14. Wendelschafer-Crabb G, Kennedy WR, Walk D (2006) Morphological features of nerves in skin biopsies. J Neurol Sci 242(1–2):15–21

    Article  PubMed  CAS  Google Scholar 

  15. Yen LD, Bennett GJ, Ribeiro-da-Silva A (2006) Sympathetic sprouting and changes in nociceptive sensory innervation in the glabrous skin of the rat hind paw following partial peripheral nerve injury. J Comp Neurol 495(6):679–690

    Article  PubMed  Google Scholar 

  16. Taylor AM, Peleshok JC, Ribeiro-da-Silva A (2009) Distribution of P2X(3)-immunoreactive fibers in hairy and glabrous skin of the rat. J Comp Neurol 514(6):555–566

    Article  PubMed  CAS  Google Scholar 

  17. Martínez-Martínez E, Toscano-Márquez B, Gutiérrez-Ospina G (2011) Long-term effects of neonatal capsaicin treatment on intraepidermal nerve fibers and keratinocyte proliferation in rat glabrous skin. Anat Rec 294(1):173–184

    Article  Google Scholar 

  18. Lambrechts D, Carmeliet P (2006) VEGF at the neurovascular interface: therapeutic implications for motor neuron disease. Biochim Biophys Acta 1762(11–12):1109–1121

    PubMed  CAS  Google Scholar 

  19. Carmeliet P, Tessier-Lavigne M (2005) Common mechanisms of nerve and blood vessel wiring. Nature 436(7048):193–200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the EU-FP6 project EuroSTEC (soft tissue engineering for congenital birth defects in children: contract: LSHB-CT-2006-037409), by the EU-FP7 project EuroSkinGraft (FP7/2007–2013: grant agreement no. 279024), by the EU-FP7 (MultiTERM, grant agreement no. 238551), and by the University of Zurich. We are particularly grateful to the Foundation Gaydoul and the sponsors of “DonaTissue” (Thérèse Meier, Robert Zingg) for their generous financial support and interest in our work.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Meuli.

Additional information

T. Biedermann and S. Böttcher-Haberzeth contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biedermann, T., Böttcher-Haberzeth, S., Klar, A.S. et al. Rebuild, restore, reinnervate: do human tissue engineered dermo-epidermal skin analogs attract host nerve fibers for innervation?. Pediatr Surg Int 29, 71–78 (2013). https://doi.org/10.1007/s00383-012-3208-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-012-3208-1

Keywords

Navigation