Skip to main content
Log in

Detergent enzymatic treatment for the development of a natural acellular matrix for oesophageal regeneration

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Purpose

Tissue engineering of the oesophagus has been proposed as a therapeutic alternative to organ transplantation. We previously demonstrated that a detergent enzymatic treatment (DET) is a valid method to obtain an acellular matrix with preservation of the native architecture. In this study, we aimed to develop a natural acellular matrix from pig oesophagus, as a valid framework for oesophageal replacement.

Methods

Pig oesophagi (n = 4) were decellularized with continuous luminal infusion of DET. To evaluate the efficiency of the decellularization, samples were assessed by histology and DNA quantification. Moreover, the ultra-structural characteristics of the acellular matrix were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

Results

Decellularization of the oesophagus was achieved after three cycles of DET. Histological analysis showed the maintenance of tissue matrix architecture with absence of cellular elements, verified by measurement of DNA. SEM and TEM analysis confirmed preservation of the ultra-structural characteristics of the native tissue.

Conclusions

Oesophageal acellular matrix can be successfully obtained by decellularization of pig oesophagus using a gentle DET via the oesophageal lumen. This decellularization method preserves the ultrastructure of the native tissue and could represent the basis for a tissue-engineered oesophagus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Spitz L, Kiely E, Pierro A (2004) Gastric transposition in children—a 21-year experience. J Pediat Surg 39:276–281. doi:10.1016/j.jpedsurg.2003.11.032 (discussion 276–281)

    Article  PubMed  Google Scholar 

  2. Allum WH, Blazeby JM, Griffin SM, Cunningham D, Jankowski JA, Wong R (2011) Association of upper gastrointestinal surgeons of great Britain and Ireland, the British Society of Gastroenterology and the British Association of Surgical Oncology. Guidelines for the management of oesophageal and gastric cancer. Gut 60:1449–1472. doi:10.1136/gut.2010.228254

    Article  PubMed  CAS  Google Scholar 

  3. Ludman L, Spitz L (2003) Quality of life after gastric transposition for oesophageal atresia. J Pediatr Surg 38:53–57. doi:10.1053/jpsu.2003.50009 (discussion 53–57)

    Article  PubMed  Google Scholar 

  4. Ure BM, Slany E, Eypasch EP, Gharib M, Holschneider AM, Troidl H (1995) Long-term functional results and quality of life after colon interposition for long-gap oesophageal atresia. Eur J Pediatr Surg 5:206–210. doi:10.1055/s-2008-1066206

    Article  PubMed  CAS  Google Scholar 

  5. Orlando G, Wood KJ, Stratta RJ et al (2011) Regenerative medicine and organ transplantation: past, present, and future. Transplantation 91:1310–1317. doi:10.1097/TP.0b013e318219ebb5

    Article  PubMed  Google Scholar 

  6. Zani A, Pierro A, Elvassore N, De Coppi P (2009) Tissue engineering: an option for esophageal replacement? Semin Pediatr Surg 18:57–62. doi:10.1053/j.sempedsurg.2008.10.011

    Article  PubMed  Google Scholar 

  7. Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB (2006) Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367:1241–1246. doi:10.1016/S0140-6736(06)68438-9

    Article  PubMed  Google Scholar 

  8. Raya-Rivera A, Esquiliano DR, Yoo JJ, Lopez-Bayghen E, Soker S, Atala A (2011) Tissue engineered autologous urethras for patients who need reconstruction: an observational study. Lancet 377:1175–1182. doi:10.1016/S0140-6736(10)62354-9

    Article  PubMed  Google Scholar 

  9. Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA et al (2008) Clinical transplantation of a tissue-engineered airway. Lancet 372:2023–2030. doi:10.1016/S0140-6736(08)61598-6

    Article  PubMed  Google Scholar 

  10. Laurance J (2010) British boy receives trachea transplant built with his own stem cells. BMJ 340:c1633. doi:10.1136/bmj.c1633

    Article  PubMed  Google Scholar 

  11. Fishman JM, De Coppi P, Elliott MJ, Atala A, Birchall MA, Macchiarini P (2011) Airway tissue engineering. Expert Opin Biol Ther 11(12):1623–1635. doi:10.1517/14712598.2011.623696

    Article  PubMed  CAS  Google Scholar 

  12. Baiguera S, Jungebluth P, Burns A, Mavilia C, Haag J, De Coppi P, Macchiarini P (2010) Tissue engineered human tracheas for in vivo implantation. Biomaterials 31(34):8931–8938. doi:10.1016/j.biomaterials.2010.08.005

    Article  PubMed  CAS  Google Scholar 

  13. Elliott MJ, De Coppi P, Speggiorin S, Roebuck D, Butler CR, Samuel E, Crowley C, McLaren C, Fierens A, Vondrys D, Cochrane L, Jephson C, Janes S, Beaumont NJ, Cogan T, Bader A, Seifalian AM, Hsuan JJ, Lowdell MW, Birchall MA (2012) Stem-cell-based, tissue engineered tracheal replacement in a child: a 2-year follow-up study. Lancet. doi:10.1016/S0140-6736(08)61345-8 (Epub ahead of print)

    Google Scholar 

  14. Orlando G, García-Arrarás JE, Soker T, Booth C, Wang Z, Ross CL, Farney AC, Rogers J, De Coppi P, Stratta RJ (2012) Regeneration and bioengineering of the gastrointestinal tract: current status and future perspectives. Dig Liver Dis 44(9):714–720. doi:10.1016/j.dld.2012.04.005

    Article  PubMed  Google Scholar 

  15. Orlando G, Bendala JD, Shupe T, Bergman C, Bitar KN, Booth C, Carbone M, Koch K, Lerut JP, Neuberger J, Petersen BE, Ricordi C, Atala A, Stratta RJ, Soker S (2012) Cell and organ bioengineering technology as applied to gastrointestinal diseases. Gut. doi:10.1136/gutjnl-2011-301111

    PubMed  Google Scholar 

  16. Takimoto Y, Nakamura T, Teramachi M, Kiyotani T, Shimizu Y (1995) Replacement of long segments of the esophagus with a collagen-silicone composite tube. ASAIO J 41:M605–M608. doi:10.1097/00002480-199507000-00082

    Article  PubMed  CAS  Google Scholar 

  17. Takimoto Y, Nakamura T, Yamamoto Y, Kiyotani T, Teramachi M, Shimizu Y (1998) The experimental replacement of a cervical esophageal segment with an artificial prosthesis with the use of collagen matrix and a silicone stent. J Thorac Cardiovasc Surg 116:98–106. doi:10.1016/S0022-5223(98)70247-8

    Article  PubMed  CAS  Google Scholar 

  18. Yamamoto Y, Nakamura T, Shimizu Y, Matsumoto K, Takimoto Y, Kiyotani T, Sekine T, Ueda H, Liu Y, Tamura N (1999) Intrathoracic esophageal replacement in the dog with the use of an artificial esophagus composed of a collagen sponge with a double-layered silicone tube. J Thorac Cardiovasc Surg 118:276–286. doi:10.1016/S0022-5223(99)70218-7

    Article  PubMed  CAS  Google Scholar 

  19. Badylak S, Meurling S, Chen M, Spievack A, Simmons-Byrd A (2000) Resorbable bioscaffold for esophageal repair in a dog model. J Pediatr Surg 35:1097–1103. doi:10.1053/jpsu.2000.7834

    Article  PubMed  CAS  Google Scholar 

  20. Badylak SF, Hoppo T, Nieponice A, Gilbert TW, Davison JM, Jobe BA (2011) Esophageal preservation in five male patients after endoscopic inner-layer circumferential resection in the setting of superficial cancer: a regenerative medicine approach with a biologic scaffold. Tissue Eng Part A 17:1643–1650. doi:10.1089/ten.tea.2010.0739

    Article  PubMed  CAS  Google Scholar 

  21. Clough A, Ball J, Smith GS, Leibman S (2011) Porcine small intestine submucosa matrix (Surgisis) for esophageal perforation. Ann Thorac Surg 91:e15–e16. doi:10.1016/j.athoracsur.2010.10.011

    Article  PubMed  Google Scholar 

  22. Lopes MF, Cabrita A, Ilharco J, Pessa P, Paiva-Carvalho J, Pires A, Patrício J (2006) Esophageal replacement in rat using porcine intestinal submucosa as a patch or a tube-shaped graft. Dis Esophagus 19:254–259. doi:10.1111/j.1442-2050.2006.00574.x

    Article  PubMed  CAS  Google Scholar 

  23. Doede T, Bondartschuk M, Joerck C, Schulze E, Goernig M (2009) Unsuccessful alloplastic esophageal replacement with porcine small intestinal submucosa. Artif Organs 33:328–333. doi:10.1111/j.1525-1594.2009.00727.x

    Article  PubMed  Google Scholar 

  24. Lopes MF, Cabrita A, Ilharco J, Pessa P, Patrício J (2006) Grafts of porcine intestinal submucosa for repair of cervical and abdominal esophageal defects in the rat. J Invest Surg 19:105–111. doi:10.1080/08941930600569621

    Article  PubMed  Google Scholar 

  25. Badylak SF, Vorp DA, Spievack AR, Simmons-Byrd A, Hanke J, Freytes DO, Thapa A, Gilbert TW, Nieponice A (2005) Esophageal reconstruction with ECM and muscle tissue in a dog model. J Surg Res 128:87–97. doi:10.1016/j.jss.2005.03.002

    Article  PubMed  Google Scholar 

  26. Ott HC, Matthiesen TS, Goh SK et al (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14:213–221. doi:10.1038/nm1684

    Article  PubMed  CAS  Google Scholar 

  27. Uygun BE, Soto-Gutierrez A, Yagi H et al (2010) Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med 16:814–820. doi:10.1038/nm.2170

    Article  PubMed  CAS  Google Scholar 

  28. Baptista PM, Siddiqui MM, Lozier G et al (2011) The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology 53:604–617. doi:10.1002/hep.24067

    Article  PubMed  CAS  Google Scholar 

  29. Ott HC, Clippinger B, Conrad C et al (2010) Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med 16:927–933. doi:10.1126/science.1189345

    Article  PubMed  CAS  Google Scholar 

  30. Totonelli G, Maghsoudlou P, Garriboli M, Riegler J, Orlando G, Burns AJ, Sebire NJ, Smith VV, Fishman JM, Ghionzoli M, Turmaine M, Birchall MA, Atala A, Soker S, Lythgoe MF, Seifalian A, Pierro A, Eaton S, De Coppi P (2012) A rat decellularized small bowel 15 scaffold that preserves villus-crypt architecture for intestinal regeneration. Biomaterials 33(12):3401–3410. doi:10.1016/j.biomaterials.2012.01.012

    Article  PubMed  CAS  Google Scholar 

  31. Saxena AK, Ainoedhofer H, Hollwarth ME (2009) Esophagus tissue engineering: in vitro generation of esophageal epithelial cell sheets and viability on scaffold. J Pediatr Surg 44:896–901. doi:10.1016/j.jpedsurg.2009.01.019

    Article  PubMed  Google Scholar 

  32. Saxena AK, Ainoedhofer H, Hollwarth ME (2010) Culture of ovine esophageal epithelial cells and in vitro esophagus tissue engineering. Tissue Eng Part C Methods 16:109–114. doi:10.1089/ten.tec.2009.0145

    Article  PubMed  CAS  Google Scholar 

  33. Conconi MT, De Coppi P, Di Liddo R, Vigolo S, Zanon GF, Parnigotto PP et al (2005) Tracheal matrices, obtained by a detergent-enzymatic method, support in vitro the adhesion of chondrocytes and tracheal epithelial cells. Transpl Int 18:727–734. doi:10.1111/j.1432-2277.2005.00082.x

    Article  PubMed  CAS  Google Scholar 

  34. Marzaro M, Vigolo S, Oselladore B, Conconi MT, Ribatti D, Giuliani S, Nico B, Perrino G, Nussdorfer GG, Parnigotto PP (2006) In vitro and in vivo proposal of an artificial esophagus. J Biomed Mater Res A 77(4):795–801. doi:10.1002/jbm.a.30666

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Michael Boyd of the Royal Veterinary College’s Biological Unit for providing the animal tissue. This investigation was supported by Great Ormond Street Hospital charity, the Fondation Eugenio Litta (Geneva, Switzerland), the Medical Research Council, the Royal College of Surgeons of England, the Sparks Children’s Medical Charity, the British Foreign Office for the UK/USA Stem Cell Collaboration Award and the Mittal Research Fund. We would also like to thank the Royal Society/Wolfson Foundation for the tissue engineering laboratory refurbishment grant obtained for the Pediatric Surgery Department in the Institute of Child Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo De Coppi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Totonelli, G., Maghsoudlou, P., Georgiades, F. et al. Detergent enzymatic treatment for the development of a natural acellular matrix for oesophageal regeneration. Pediatr Surg Int 29, 87–95 (2013). https://doi.org/10.1007/s00383-012-3194-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-012-3194-3

Keywords

Navigation