Skip to main content

Advertisement

Log in

A decomposition of ENSO’s impacts on the northern winter stratosphere: competing effect of SST forcing in the tropical Indian Ocean

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study applies WACCM, a stratosphere-resolving model to dissect the stratospheric responses in the northern winter extratropics to the imposed ENSO-related SST anomalies in the tropics. It is found that the anomalously warmer and weaker stratospheric polar vortex during warm ENSO is basically a balance of the opposite effects between the SST anomalies in the tropical Pacific (TPO) and that over the tropical Indian Ocean basin (TIO). Specifically, the ENSO-related SST anomalies over the TIO are to induce an anomalously colder and stronger stratospheric polar vortex during warm ENSO, which acts to partially cancel out the much stronger warmer and weaker polar vortex response to the SST anomalies over the TPO. Further analysis indicates that, while the SST forcing from the TPO contributes to the anomalously positive Pacific North America (PNA) pattern in the troposphere and the enhancement of the stationary wavenumber (WN)-1 in the stratosphere during warm ENSO, the TIO SST forcing is to induce an anomalously negative PNA and a reduction of both WN-1 and WN-2 in the stratosphere. Diagnosis of E–P flux confirms that, the anomalously upward propagation of stationary waves in the extratropics mainly lies over the western coast of North America during warm ENSO, which is mainly associated with the TPO-induced positive PNA response and is partially suppressed by the effect of the accompanying TIO SST forcing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alexander MA, Blade I, Newman M, Lanzante JR, Lau NC, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J Clim 15(16):2205–2231

    Article  Google Scholar 

  • Andrews DG, Holton JR, Leovy CB (1987) Middle atmosphere dynamics. Academic press, San Diego

    Google Scholar 

  • Angell JK (1981) Comparison of variations in atmospheric quantities with sea surface temperature variations in the equatorial eastern Pacific. Mon Weather Rev 109(2):230–243

    Article  Google Scholar 

  • Angell JK, Korshover J (1978) Estimate of global temperature variations in the 100–30 mb layer between 1958 and 1977. Mon Weather Rev 106(10):1422–1432

    Article  Google Scholar 

  • Annamalai H, Okajima H, Watanabe M (2007) Possible impact of the Indian Ocean SST on the northern hemisphere circulation during El Niño. J Clim 20(13):3164–3189

    Article  Google Scholar 

  • Baldwin MP, Dunkerton TJ (1999) Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J Geophys Res 104(D24):30937–30946. doi:10.1029/1999jd900445

    Article  Google Scholar 

  • Baldwin MP, O’sullivan D (1995) Stratospheric effects of ENSO-related tropospheric circulation anomalies. J Clim 8(4):649–667

    Article  Google Scholar 

  • Barsugli JJ, Sardeshmukh PD (2002) Global atmospheric sensitivity to tropical SST anomalies throughout the Indo-Pacific basin. J Clim 15(23):3427–3442

    Article  Google Scholar 

  • Bekki S et al (2013) Climate impact of stratospheric ozone recovery. Geophys Res Lett 40(11):2796–2800. doi:10.1002/grl.50358

    Article  Google Scholar 

  • Bell CJ, Gray LJ, Charlton-Perez AJ, Joshi MM, Scaife AA (2009) Stratospheric communication of El Niño teleconnections to European winter. J Clim 22(15):4083–4096. doi:10.1175/2009jcli2717.1

    Article  Google Scholar 

  • Branstator G (1985) Analysis of general circulation model sea surface temperature anomaly simulations using a linear model. Part II: eigenanalysis. J Atmos Sci 42(21):2242–2254

    Article  Google Scholar 

  • Branstator G, Haupt SE (1998) An empirical model of barotropic atmospheric dynamics and its response to tropical forcing. J Clim 11(10):2645–2667

    Article  Google Scholar 

  • Cadet DL (1985) The Southern Oscillation over the Indian Ocean. J Climatol 5(2):189–212

    Article  Google Scholar 

  • Cagnazzo C, Manzini E (2009) Impact of the stratosphere on the winter tropospheric teleconnections between ENSO and the North Atlantic and European region. J Clim 22(5):1223–1238

    Article  Google Scholar 

  • Cagnazzo C et al (2009) Northern winter stratospheric temperature and ozone responses to ENSO inferred from an ensemble of chemistry climate models. Atmos Chem Phys 9(22):8935–8948

    Article  Google Scholar 

  • Cai M, Ren RC (2006) 40–70 day meridional propagation of global circulation anomalies. Geophys Res Lett 33:L06818. doi:10.1029/2005GL025024

    Google Scholar 

  • Cai M, Ren RC (2007) Meridional and downward propagation of atmospheric circulation anomalies. Part I: Northern Hemisphere cold season variability. J Atmos Sci 64(6):1880–1901

    Article  Google Scholar 

  • Calvo N, Marsh DR (2011) The combined effects of ENSO and the 11 year solar cycle on the Northern Hemisphere polar stratosphere. J Geophys Res 116:D23112. doi:10.1029/2010JD015226

    Article  Google Scholar 

  • Calvo N, Giorgetta MA, Garcia-Herrera R, Manzini E (2009) Nonlinearity of the combined warm ENSO and QBO effects on the Northern Hemisphere polar vortex in MAECHAM5 simulations. J Geophys Res 114:D13109. doi:10.1029/2008JD011445

    Article  Google Scholar 

  • Camp CD, Tung KK (2007) Stratospheric polar warming by ENSO in winter: a statistical study. Geophys Res Lett 34:L04809. doi:10.1029/2006GL028521

    Google Scholar 

  • Christiansen B (2001) Downward propagation of zonal mean zonal wind anomalies from the stratosphere to the troposphere: model and reanalysis. J Geophys Res 106(D21):27307–27322. doi:10.1029/2000jd000214

    Article  Google Scholar 

  • Copsey D, Sutton R, Knight JR (2006) Recent trends in sea level pressure in the Indian Ocean region. Geophys Res Lett 33(19):L19712. doi:10.1029/2006gl027175

    Article  Google Scholar 

  • Covey DL, Hastenrath S (1978) The Pacific El-Niño phenomenon and Atlantic circulation. Mon Wea Rev 106(9):1280–1287

    Article  Google Scholar 

  • Curtis S, Hastenrath S (1995) Forcing of anomalous sea surface temperature evolution in the tropical Atlantic during Pacific warm events. J Geophys Res 100(C8):15835–15847. doi:10.1029/95jc01502

    Article  Google Scholar 

  • Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart J Roy Meteor Soc 137(656):553–597

    Article  Google Scholar 

  • Ding RQ, Li JP (2012) Influences of ENSO teleconnection on the persistence of sea surface temperature in the tropical Indian Ocean. J Clim 25(23):8177–8195. doi:10.1175/Jcli-D-11-00739.1

    Article  Google Scholar 

  • Enfield DB, Mayer DA (1997) Tropical Atlantic sea surface temperature variability and its relation to El Niño-Southern Oscillation. J Geophys Res 102(C1):929–945. doi:10.1029/96jc03296

    Article  Google Scholar 

  • Farrara JD, Mechoso CR, Robertson AW (2000) Ensembles of AGCM two-tier predictions and simulations of the circulation anomalies during winter 1997–98. Mon Wea Rev 128(10):3589–3604

    Article  Google Scholar 

  • Fletcher CG, Kushner PJ (2011) The role of linear interference in the annular mode response to tropical SST forcing. J Clim 24(3):778–794

    Article  Google Scholar 

  • Free M, Seidel DJ (2009) Observed El Niño-Southern Oscillation temperature signal in the stratosphere. J Geophys Res 114:D23108. doi:10.1029/2009JD012420

    Article  Google Scholar 

  • Garcia RR, Marsh DR, Kinnison DE, Boville BA, Sassi F (2007) Simulation of secular trends in the middle atmosphere, 1950–2003. J Geophys Res 112:D09301. doi:10.1029/2006jd007485

    Google Scholar 

  • García-Herrera R, Calvo N, Garcia RR, Giorgetta MA (2006) Propagation of ENSO temperature signals into the middle atmosphere: a comparison of two general circulation models and ERA-40 reanalysis data. J Geophys Res 111:D06101. doi:10.1029/2005JD006061

    Google Scholar 

  • Garfinkel CI, Hartmann DL (2007) Effects of the El Niño-Southern Oscillation and the Quasi-Biennial Oscillation on polar temperatures in the stratosphere. J Geophys Res 112:D19112. doi:10.1029/2007JD008481

    Article  Google Scholar 

  • Garfinkel CI, Hartmann DL (2008) Different ENSO teleconnections and their effects on the stratospheric polar vortex. J Geophys Res 113:D18114. doi:10.1029/2008JD009920

    Article  Google Scholar 

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Quart J Roy Meteor Soc 106(449):447–462

    Article  Google Scholar 

  • Graf H-F, Zanchettin D, Timmreck C, Bittner M (2014) Observational constraints on the tropospheric and near-surface winter signature of the Northern Hemisphere stratospheric polar vortex. Clim Dyn 43:3245–3266. doi:10.1007/s00382-014-2101-0

    Article  Google Scholar 

  • Hamilton K (1993) An examination of observed Southern Oscillation effects in the northern hemisphere stratosphere. J Atmos Sci 50(20):3468–3473

    Article  Google Scholar 

  • Hamilton K (1995) Interannual variability in the northern hemisphere winter middle atmosphere in control and perturbed experiments with the GFDL SKYHI general circulation model. J Atmos Sci 52(1):44–66

    Article  Google Scholar 

  • Hegyi BM, Deng Y, Black RX, Zhou RJ (2014) Initial transient response of the winter polar stratospheric vortex to idealized equatorial Pacific sea surface temperature anomalies in the NCAR WACCM. J Clim 27(7):2699–2713

    Article  Google Scholar 

  • Hoerling MP, Hurrell JW, Xu T, Bates GT, Phillips AS (2004) Twentieth century North Atlantic climate change. Part II: understanding the effect of Indian Ocean warming. Clim Dyn 23:391–405. doi:10.1007/s00382-004-0433-x

    Article  Google Scholar 

  • Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38(6):1179–1196. doi:10.1175/1520-0469(1981)038<1179:Tslroa>2.0.Co;2

    Article  Google Scholar 

  • Hoskins BJ, James IN, White GH (1983) The shape, Propagation and mean-flow interaction of large-scale weather systems. J Atmos Sci 40(7):1595–1612. doi:10.1175/1520-0469(1983)040<1595:tspamf>2.0.co;2

    Article  Google Scholar 

  • Hu D, Tian W, Xie F, Shu J, Dhomse S (2014) Effects of meridional sea surface temperature changes on stratospheric temperature and circulation. Adv Atmos Sci 31(4):888–900. doi:10.1007/s00376-013-3152-6

    Article  Google Scholar 

  • Ineson S, Scaife AA (2008) The role of the stratosphere in the European climate response to El Niño. Nat Geosci 2(1):32–36. doi:10.1038/ngeo381

    Article  Google Scholar 

  • Jin FF, Hoskins BJ (1995) The direct response to tropical heating in a baroclinic atmosphere. J Atmos Sci 52(3):307–319

    Article  Google Scholar 

  • Klein SA, Soden BJ, Lau NC (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12(4):917–932

    Article  Google Scholar 

  • Kodera K, Yamazaki K, Chiba M, Shibata K (1990) Downward propagation of upper stratospheric mean zonal wind perturbation to the troposphere. Geophys Res Lett 17(9):1263–1266. doi:10.1029/Gl017i009p01263

    Article  Google Scholar 

  • Kosaka Y, Nakamura H (2006) Structure and dynamics of the summertime Pacific-Japan teleconnection pattern. Quart J Roy Meteorol Soc 132(619):2009–2030. doi:10.1256/qj.05.204o

    Article  Google Scholar 

  • Kumar A, Hoerling MP (1998) Specification of regional sea surface temperatures in atmospheric general circulation model simulations. J Geophys Res 103(D8):8901–8907. doi:10.1029/98jd00427

    Article  Google Scholar 

  • Kumar A, Hoerling MP (2003) The nature and causes for the delayed atmospheric response to El Niño. J Clim 16(9):1391–1403

    Article  Google Scholar 

  • Labitzke K, Van Loon H (1989) The Southern Oscillation. Part IX: the influence of volcanic eruptions on the Southern Oscillation in the stratosphere. J Clim 2(10):1223–1226

    Article  Google Scholar 

  • Lan XQ, Chen W, Wang L (2012) Quasi-stationary planetary wave-mean flow interactions in the Northern Hemisphere stratosphere and their responses to ENSO events. Sci China Earth Sci 55(3):405–417. doi:10.1007/S11430-011-4345-4

    Article  Google Scholar 

  • Lanzante JR (1996) Lag relationships involving tropical sea surface temperatures. J Clim 9(10):2568–2578

    Article  Google Scholar 

  • Li Y, Lau NC (2013) Influences of ENSO on stratospheric variability, and the descent of stratospheric perturbations into the lower troposphere. J Clim 26(13):4725–4748

    Article  Google Scholar 

  • Li S, Robinson WA, Hoerling MP, Weickmann KM (2007) Dynamics of the extratropical response to a tropical Atlantic SST anomaly. J Clim 20(3):560–574

    Article  Google Scholar 

  • Li YJ, Li JP, Jin FF, Zhao S (2015) Interhemispheric propagation of stationary Rossby waves in the horizontally nonuniform background flow. J Atmos Sci 72(8):3233–3256

    Article  Google Scholar 

  • Manzini E, Giorgetta MA, Esch M, Kornblueh L, Roeckner E (2006) The influence of sea surface temperatures on the northern winter stratosphere: ensemble simulations with the MAECHAM5 model. J Clim 19(16):3863–3881

    Article  Google Scholar 

  • Marsh DR, Mills MJ, Kinnison DE, Lamarque J-F, Calvo N, Polvani LM (2013) Climate change from 1850 to 2005 Simulated in CESM1(WACCM). J Clim 26(19):7372–7391

    Article  Google Scholar 

  • Mechoso CR, Lyons SW (1988) On the atmospheric response to SST anomalies associated with the Atlantic warm event during 1984. J Clim 1(4):422–428

    Article  Google Scholar 

  • Murtugudde R, Busalacchi AJ (1999) Interannual variability of the dynamics and thermodynamics of the tropical Indian Ocean. J Clim 12(8):2300–2326

    Article  Google Scholar 

  • Neale RB, Richter J, Park S, Lauritzen PH, Vavrus SJ, Rasch PJ, Zhang MH (2013) The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J Clim 26(14):5150–5168

    Article  Google Scholar 

  • Newell RE, Weare BC (1976) Factors governing tropospheric mean temperature. Science 194(4272):1413–1414

    Article  Google Scholar 

  • Newman M, Sardeshmukh PD (1998) The impact of the annual cycle on the North Pacific/North American response to remote low-frequency forcing. J Atmos Sci 55(8):1336–1353

    Article  Google Scholar 

  • Nicholson SE (1997) An analysis of the ENSO signal in the tropical Atlantic and western Indian Oceans. Int J Climatol 17(4):345–375

    Article  Google Scholar 

  • Pan YH, Oort AH (1983) Global climate variations connected with sea surface temperature anomalies in the eastern equatorial Pacific ocean for the 1958–73 period. Mon Weather Rev 111(6):1244–1258

    Article  Google Scholar 

  • Peng SL, Robinson WA, Li SL, Hoerling MP (2005) Tropical Atlantic SST forcing of coupled north Atlantic seasonal responses. J Clim 18(3):480–496

    Article  Google Scholar 

  • Plumb RA (1985) On the three-dimensional propagation of stationary waves. J Atmos Sci 42(3):217–229

    Article  Google Scholar 

  • Polvani LM, Waugh DW (2004) Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes. J Clim 17(18):3548–3554

    Article  Google Scholar 

  • Rao J, Ren RC, Yang Y (2014) Numerical simulations of the impacts of tropical convective heating on the intensity of the northern winter stratospheric polar vortex. Chin J Atmos Sci 38(6):1159–1171 (in Chinese)

    Google Scholar 

  • Rao J, Ren RC, Yang Y (2015) Parallel comparison of the northern winter stratospheric circulation in reanalysis and in CMIP5 models. Adv Atmos Sci 32(7):952–966. doi:10.1007/s00376-014-4192-2

    Article  Google Scholar 

  • Rayner NA et al (2006) Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: the HadSST2 dataset. J Clim 19(3):446–469

    Article  Google Scholar 

  • Reid GC, Gage KS, Mcafee JR (1989) The thermal response of the tropical atmosphere to variations in equatorial Pacific sea surface temperature. J Geophys Res 94(D12):14705–14716. doi:10.1029/Jd094id12p14705

    Article  Google Scholar 

  • Ren RC, Cai M (2007) Meridional and vertical out-of-phase relationships of temperature anomalies associated with the Northern Annular Mode variability. Geophys Res Lett 34:L07704. doi:10.1029/2006GL028729

    Article  Google Scholar 

  • Ren RC, Yang Y (2012) Changes in winter stratospheric circulation in CMIP5 scenarios simulated by the climate system model FGOALS-s2. Adv Atmos Sci 29(6):1374–1389

    Article  Google Scholar 

  • Ren RC, Cai M, Xiang C, Wu G (2012) Observational evidence of the delayed response of stratospheric polar vortex variability to ENSO SST anomalies. Clim Dyn 38:1345–1358. doi:10.1007/s00382-011-1137-7

    Article  Google Scholar 

  • Richter JH, Sassi F, Garcia RR (2010) Toward a physically based gravity wave source parameterization in a general circulation model. J Atmos Sci 67(1):136–156

    Article  Google Scholar 

  • Robertson AW, Mechoso CR, Kim YJ (2000) The influence of Atlantic sea surface temperature anomalies on the north Atlantic oscillation. J Clim 13(1):122–138

    Article  Google Scholar 

  • Sardeshmukh PD, Hoskins BJ (1988) The generation of global rotational flow by steady idealized tropical divergence. J Atmos Sci 45(7):1228–1251. doi:10.1175/1520-0469(1988)045<1228:Tgogrf>2.0.Co;2

    Article  Google Scholar 

  • Sassi F, Kinnison D, Boville BA, Garcia RR, Roble R (2004) Effect of El Niño-Southern Oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere. J Geophys Res 109:D17108. doi:10.1029/2003JD004434

    Article  Google Scholar 

  • Scaife AA, Butchart N, Jackson DR, Swinbank R (2003) Can changes in ENSO activity help to explain increasing stratospheric water vapor? Geophys Res Lett 30(17):1880. doi:10.1029/2003GL017591

    Article  Google Scholar 

  • Simmons AJ, Wallace JM, Branstator GW (1983) Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J Atmos Sci 40(6):1363–1392

    Article  Google Scholar 

  • Spencer H, Slingo JM, Davey MK (2004) Seasonal predictability of ENSO teleconnections: the role of the remote ocean response. Clim Dyn 22:511–526. doi:10.1007/s0082-004-0393-1

    Article  Google Scholar 

  • Sutton RT, Hodson DLR (2007) Climate response to basin-scale warming and cooling of the North Atlantic Ocean. J Clim 20(5):891–907

    Article  Google Scholar 

  • Taguchi M (2010) Wave driving in the tropical lower stratosphere as simulated by WACCM. Part II: ENSO-induced changes for northern winter. J Atmos Sci 67(2):543–555

    Article  Google Scholar 

  • Taguchi M, Hartmann DL (2006) Increased occurrence of stratospheric sudden warmings during El Niño as simulated by WACCM. J Clim 19(3):324–332

    Article  Google Scholar 

  • Ting MF, Sardeshmukh PD (1993) Factors determining the extratropical response to equatorial diabatic heating anomalies. J Atmos Sci 50(6):907–918

    Article  Google Scholar 

  • Toniazzo T, Scaife AA (2006) The influence of ENSO on winter North Atlantic climate. Geophys Res Lett 33(24):L24704. doi:10.1029/2006gl027881

    Article  Google Scholar 

  • Tourre YM, White WB (1995) ENSO signals in global upper-ocean temperature. J Phys Oceanogr 25(6):1317–1332

    Article  Google Scholar 

  • Van Loon H, Labitzke K (1987) The Southern Oscillation. Part V: the anomalies in the lower stratosphere of the northern hemisphere in winter and a comparison with the Quasi-Biennial Oscillation. Mon Weather Rev 115(2):357–369

    Article  Google Scholar 

  • Van Loon H, Zerefos CS, Repapis CC (1982) The Southern Oscillation in the stratosphere. Mon Wea Rev 110(3):225–229

    Article  Google Scholar 

  • Wallace JM, Chang FC (1982) Interannual variability of the wintertime polar vortex in the northern hemisphere middle stratosphere. J Meteorol Soc Jpn 60(1):149–155

    Google Scholar 

  • Wang C, Lee S-K, Enfield DB (2008) Climate response to anomalously large and small Atlantic warm pools during the summer. J Clim 21(11):2437–2450

    Article  Google Scholar 

  • Watanabe M, Kimoto M (1999) Tropical-extratropical connection in the Atlantic atmosphere–ocean variability. Geophys Res Lett 26(15):2247–2250. doi:10.1029/1999gl900350

    Article  Google Scholar 

  • Weare BC, Navato AR, Newell RE (1976) Empirical orthogonal analysis of Pacific sea surface temperatures. J Phys Oceanogr 6(5):671–678

    Article  Google Scholar 

  • Wei K, Chen W, Huang RH (2007) Association of tropical Pacific sea surface temperatures with the stratospheric Holton-Tan Oscillation in the Northern Hemisphere winter. Geophys Res Lett 34:L16814. doi:10.1029/2007GL030478

    Google Scholar 

  • Wu L, He F, Liu Z, Li C (2007) Atmospheric teleconnections of tropical Atlantic variability: interhemispheric, tropical-extratropical, and cross-basin interactions. J Clim 20(5):856–870

    Article  Google Scholar 

  • Xie F, Li J, Tian W, Feng J, Huo Y (2012) Signals of El Niño Modoki in the tropical tropopause layer and stratosphere. Atmos Chem Phys 12(11):5259–5273

    Article  Google Scholar 

  • Xie F, Li J, Tian W, Zhang J, Shu J (2014a) The impacts of two types of El Niño on global ozone variations in the last three decades. Adv Atmos Sci 31(5):1113–1126. doi:10.1007/s00376-013-3166-0

    Article  Google Scholar 

  • Xie F, Li J, Tian W, Zhang J, Sun C (2014b) The relative impacts of El Niño Modoki, canonical El Niño, and QBO on tropical ozone changes since the 1980s. Environ Res Lett 9(6):064020. doi:10.1088/1748-9326/9/6/064020

    Article  Google Scholar 

  • Yu LS, Rienecker MM (1999) Mechanisms for the Indian Ocean warming during the 1997–98 El Niño. Geophys Res Lett 26(6):735–738. doi:10.1029/1999gl900072

    Article  Google Scholar 

  • Zhao S, Li JP, Li YJ (2015) Dynamics of an interhemispheric teleconnection across the critical latitude through a southerly duct during boreal winter. J Clim. doi:10.1175/JCLI-D-14-00425.1

    Google Scholar 

  • Zubiaurre I, Calvo N (2012) The El Niño-Southern Oscillation (ENSO) Modoki signal in the stratosphere. J Geophys Res D04104. doi:10.1029/2011JD016690

Download references

Acknowledgments

This work are jointly supported by research grant from the National Natural Science Foundation of China (41575041, 41430533 and 91437105), a Chinese Academy of Sciences project (Grant No. XDA11010402) and a China Meteorological Administration Special Public Welfare Research Fund (Grant No. GYHY201406001). The authors thank the reviewers and editors for their helpful comments and kind suggestions. We acknowledge the UK Met Office providing HadISST dataset. We also thank the NCAR providing the WACCM model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongcai Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, J., Ren, R. A decomposition of ENSO’s impacts on the northern winter stratosphere: competing effect of SST forcing in the tropical Indian Ocean. Clim Dyn 46, 3689–3707 (2016). https://doi.org/10.1007/s00382-015-2797-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2797-5

Keywords

Navigation