Skip to main content
Log in

Detecting trends that are nonlinear and asymmetric on diurnal and seasonal time scales

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Trends in climate time series are often nonlinear and temporally-asymmetric, i.e. the trend is different for different seasons and/or hours of the day. Here a method is developed that allows the nonlinearity and temporal asymmetry of a trend to be investigated simultaneously. First, nonlinear trend components are extracted from a univariate time series, by adapting a nonparametric dimension-reduction method. Then, the nonlinear trend components are substituted into a regression model in which the periodic mean component and the periodic variation in the amplitude of the nonlinear trend are modeled using harmonic functions of the seasonal and diurnal periods. Third, trend patterns in the positive and negative anomalies are investigated, by extending the nonlinear trend model using indicator variables. Fourth, a non-local inferential test is developed to test the statistical significance of the trend patterns. The nonlinear trend model is applied to a simulated time series, as well as to long-term high-resolution temperature records from five Southern Hemisphere sites: Lucas Heights, Sydney Airport, Cape Grim, Macquarie Island and Law Dome. Our method should be generally useful for identifying the effect of both climate-related factors and observation/site-related factors on seasonal and diurnal trends in meteorological data series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adams N (2009) Climate trends at Macquarie Island and expectations of future climate change in the sub-antarctic. Pap Proc R Soc Tasman 14:1–8

    Google Scholar 

  • Allison I, Wendler G, Radok U (1993) Climatology of the East Antarctic Ice Sheet (\(100^{\circ}\hbox{E}\) to \(140^{\circ}\hbox{E}\)) derived from automatic weather stations. J Geophys Res D 5(98):8815–8823

    Article  Google Scholar 

  • Barbosa SM (2011) Testing for deterministic trends in global sea surface temperatures. J Clim 24:2516–2522. doi:10.1175/2010JCLI3877.1

    Article  Google Scholar 

  • Bates BC, Chandler RE, Bowman AW (2012) Trend estimation and change point detection in individual climatic series using flexible regression methods. J Geophys Res 117:D16106. doi:10.1029/2011JD017077

    Article  Google Scholar 

  • Beckers JM, Rixen M (2003) EOF calculations and data filling from incomplete oceanographic datasets. J Atmos Oceanic Technol 20:1839–1856. doi:10.1175/1520-0426(2003)020<1839:ECADFF>2.0.CO;2

    Article  Google Scholar 

  • Beelen AJ, van Delden AJ (2012) Cleaner air brings better views, more sunshine and warmer summer days in the Netherlands. Weather 67:21–25. doi:10.1002/wea.854

    Article  Google Scholar 

  • Bhend J, Whetton P (2013) Consistency of simulated and observed regional changes in temperature, sea level and precipitation. Clim Change 118:799–810. doi:10.1007/s10584-012-0691-2

    Article  Google Scholar 

  • Braganza K, Karoly DJ, Arblaster JM (2004) Diurnal temperature range as an index of global climate change during the twentieth century. Geophys Res Lett 31:L13217. doi:10.1029/2004GL019998

    Article  Google Scholar 

  • Cohen JL, Furtado JC, Barlow M, Alexeev VA, Cherry JE (2012) Asymmetric seasonal temperature trends. Geophys Res Lett 39:L04705. doi:10.1029/2011GL050582

    Google Scholar 

  • DelSole Y, Yang X (2011) Field significance of regression patterns. J Clim 24:5094–5107. doi:10.1175/2011JCLI4105.1

    Article  Google Scholar 

  • Deser C, Phillips AS, Alexander MA (2010) Twentieth century sea surface temperature trends revisited. Geophys Res Lett 37:L10701. doi:10.1029/2010GL043321

    Article  Google Scholar 

  • Donat MG, Alexander LV (2012) The shifting probability distribution of global daytime and night-time temperatures. Geophys Res Lett 39:L14707. doi:10.1029/2012GL052459

    Article  Google Scholar 

  • Fall S, Watts A, Nielsen-Gammon J, Jones E, Niyogi D, Christy JR, Pielke RA Sr (2011) Analysis of the impacts of station exposure on the U.S. Historical Climatology Network temperatures and temperature trends. J Geophys Res 116:D14120. doi:10.1029/2010JD015146

    Article  Google Scholar 

  • Fuentes M, Guttorp P, Sampson PD (2006) Using transforms to analyze space-time processes. In: Finkenstdt B, Held L, Isham V (eds) Statistical methods for spatio-temporal systems. Chapman and Hall/CRC, Boca Raton, pp 77–150. doi:10.1201/9781420011050.ch3

    Chapter  Google Scholar 

  • Hande LB, Siems ST, Manton MJ (2012) Observed trends in wind speed over the Southern Ocean. Geophys Res Lett 39:L11802. doi:10.1029/2012GL051734

    Article  Google Scholar 

  • Hannachi A (2007) Pattern hunting in climate: a new method for finding trends in gridded climate data. Int J Climatol 27:1–15. doi:10.1002/joc.1375

    Article  Google Scholar 

  • Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48:RG4004. doi:10.1029/2010RG000345

    Article  Google Scholar 

  • Josse J, Husson F (2012) Selecting the number of components in principal components analysis using cross-validation approximations. Comput Stat Data Anal 56:1869–1879. doi:10.1016/j.csda.2011.11.012

    Article  Google Scholar 

  • Jovanovic B, Braganza K, Collins D, Jones D (2012) Climate variations and change evident in high-quality climate data for Australia’s Antarctic and remote island weather stations. Aust Meteorol Oceanogr J 62:247–261

    Google Scholar 

  • Karl TR, Jones PD, Knight RW, Kukla G, Plummer N, Razuvayev V, Gallo KP, Lindseay J, Charlson RJ, Peterson TC (1993) Asymmetric trends of daily maximum and minimum temperatures. Bull Am Meteorol Soc 74:1007–1023

    Article  Google Scholar 

  • Liebmann B, Dole RM, Jones C, Blade I, Allured D (2010) Influence of choice of time period on global surface temperature trend estimates. Bull Am Meteorol Soc 91:1485–1491. doi:10.1175/2010BAMS3030.1

    Article  Google Scholar 

  • Miranda PMA, Tome AR (2009) Spatial structure of the evolution of surface temperature (1951–2004). Clim Change 93:269–284. doi:10.1007/s10584-008-9540-8

    Article  Google Scholar 

  • Parkinson CL, Cavalieri DJ (2012) Antarctic sea ice variability and trends, 1979–2010. Cryosphere 6:871–880. doi:10.5194/tc-6-871-2012

    Article  Google Scholar 

  • Pepin NC, Lundquist JD (2008) Temperature trends at high elevations: patterns across the globe. Geophys Res Lett 35:L14701. doi:10.1029/2008GL034026

    Article  Google Scholar 

  • Pepler AS (2011) Heat, humidity, and the El-Nino-Southern Oscillation in Sydney Australia. Aust Meteorol Oceanogr J 61:231–239

    Google Scholar 

  • Richard Y, Rouault M, Pohl B et al (2013) Temperature changes in the mid- and high-latitudes of the Southern Hemisphere. Int J Climatol. doi:10.1002/joc.3563

  • Smidl V, Quinn A (2007) On Bayesian principal component analysis. Comput Stat Data Anal 51:4101–4123

    Article  Google Scholar 

  • Stine AR, Huybers P, Fung IY (2009) Changes in the phase of the annual cycle of surface temperature. Nature 457:435–440. doi:10.1038/nature07675

    Article  Google Scholar 

  • Steig EJ, Schneider DP, Rutherford SD, Mann ME, Comiso JC, Shindell DT (2009) Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature 457:459–463. doi:10.1038/nature07669

    Article  Google Scholar 

  • Stouffer RJ, Wetherald RT (2007) Changes of variability in response to increasing greenhouse gases. Part I: temperature. J Clim 18:5455–5467. doi:10.1175/2007JCLI1384.1

    Article  Google Scholar 

  • Sun F, Roderick ML, Farquhar GD, Lim WH, Zhang Y, Bennett N, Roxburgh SH (2010) Partitioning the variance between space and time. Geophys Res Lett 37:L12704. doi:10.1029/2010GL043323

    Google Scholar 

  • Thompson DW, Wallace JM, Jones PD, Kennedy JJ (2009) Identifying signatures of natural climate variability in time series of global-mean surface temperature: methodology and insights. J Clim 20:6120–6141. doi:10.1175/2009JCLI3089.1

    Article  Google Scholar 

  • Trewin B (2010) Exposure, instrumentation, and observing practice effects on land temperature measurements. WIREs Clim Change 1:490–506. doi:10.1002/wcc.46

    Article  Google Scholar 

  • Trewin B (2012) Techniques involved in developing the Australian Climate Observations Reference Network Surface Air Temperature (ACORN-SAT) dataset. Center for Australian Weather and Climate Research Technical Report 49. http://www.cawcr.gov.au/publications/technicalreports.php

  • van Oldenborgh GJ, Reyes FJD, Drijfhout SS, Hawkins E (2013) Reliability of regional climate model trends. Env Res Lett 8:014055. doi:10.1088/1748-9326/8/1/014055

    Article  Google Scholar 

  • Vinnikov KY, Robock A, Basist A (2002) Diurnal and seasonal cycles of trends of surface air temperature. J Geophys Res 107(D22):4641. doi:10.1029/2001JD002007

    Google Scholar 

  • Vinnikov KY, Robock A, Grody NC, Basist A (2004) Analysis of diurnal and seasonal cycles and trends in climatic records with arbitrary observations times. Geophys Res Lett 31:L06205. doi:10.1029/2003GL019196

    Article  Google Scholar 

  • Vinnikov KY, Grody NC, Robock A, Stouffer RJ, Jones PD, Goldberg MD (2006) Temperature trends at the surface and in the troposphere. J Geophys Res 111:D03106. doi:10.1029/2005JD006392

    Google Scholar 

  • Walford P (1987) Introduction to the Cape Grim computer system (GRIMCO). In: Firgan BW, Fraser PJ (eds) Baseline atmospheric program (Australia) 1985. ABOM/CSIRO, pp 34–36. http://www.bom.gov.au/inside/cgbaps/baseline.shtml

  • Wold H (1966) Estimation of principal components and related models by iterative least squares. In: Krishnaiah PR (eds) Multivariate analysis. Academic Press, New York, pp 391–420

    Google Scholar 

  • Xu Y, Ramanathan X (2012) Latitudinally asymmetric response of global surface temperature: implications for regional climate change. Geophys Res Lett 39:L13706. doi:10.1029/2012GL052116

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr Blair Trewin and Prof. John Dodson for helpful comments on a draft manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matt J. Fischer.

Electronic supplementary material

Online Resource 1: One electronic file containing a Supplementary Discussion section and 4 Supplementary Figures is provided. These figures are labeled Fig. S1, S2, etc. both in the manuscript text and Supplementary Material.

PDF (267 KB)

Appendix

Appendix

This appendix outlines a method for matrix imputation (i.e. filling an incomplete matrix) based on Beckers and Rixen (2003) and Fuentes et al. (2006). X is the incomplete matrix. The algorithm proceeds as follows:

  1. 1.

    Determine an intial component, u 1. One method is to calculate the first eigenvector (v 1) of the correlation matrix of X (using pairwise complete observations), and calculate u 1 as the average over all the columns of X (after adjusting X by Xdiag(sign(v 1))). Set k = 1.

  2. 2.

    Remove a set of known values from X (e.g. 30 known values).

  3. 3.

    Replace all the missing values in X by regression of X on u 1.

  4. 4.

    Compute the rank-k singular value decomposition (SVD) of X.

  5. 5.

    Update the missing values in X by the elements of the rank-k SVD approximation.

  6. 6.

    Return to step 4 and iterate to convergence.

  7. 7.

    Calculate the RMSE between the known values (step 2), and their predicted values. If the RMSE is smaller than previous values, then increase k and return to step 4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, M.J., Paterson, A.W. Detecting trends that are nonlinear and asymmetric on diurnal and seasonal time scales. Clim Dyn 43, 361–374 (2014). https://doi.org/10.1007/s00382-014-2086-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2086-8

Keywords

Navigation