Skip to main content

Advertisement

Log in

On the use of nudging techniques for regional climate modeling: application for tropical convection

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Using a large set of WRF ensemble simulations at 70-km horizontal resolution over a domain encompassing the Warm Pool region and its surroundings [45°N–45°S, 10°E–240°E], this study aims at quantifying how nudging techniques can modify the simulation of deep atmospheric convection. Both seasonal mean climate, transient variability at intraseasonal timescales, and the respective weight of internal (stochastic) and forced (reproducible) variability are considered. Sensitivity to a large variety of nudging settings (nudged variables and layers and nudging strength) and to the model physics (using 3 convective parameterizations) is addressed. Integrations are carried out during a 7-month season characterized by neutral background conditions and strong intraseasonal variability. Results show that (1) the model responds differently to the nudging from one parameterization to another. Biases are decreased by ~50 % for Betts–Miller–Janjic convection against 17 % only for Grell–Dévényi, the scheme producing yet the largest biases; (2) relaxing air temperature is the most efficient way to reduce biases, while nudging the wind increases most co-variability with daily observations; (3) the model’s internal variability is drastically reduced and mostly depends on the nudging strength and nudged variables; (4) interrupting the relaxation before the end of the simulations leads to an abrupt convergence towards the model’s natural solution, with no clear effects on the simulated climate after a few days. The usefulness and limitations of the approach are finally discussed through the example of the Madden–Julian Oscillation, that the model fails at simulating and that can be artificially and still imperfectly reproduced in relaxation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Alexandru A, de Elia R, Laprise R (2007) Internal variability in regional climate downscaling at the seasonal scale. Mon Weather Rev 135:3221–3238. doi:10.1175/MWR3456.1

    Article  Google Scholar 

  • Alexandru A, de Elia R, Laprise R, Separovic L, Biner S (2009) Sensitivity study of regional climate model simulations to large-scale nudging parameters. Mon Weather Rev 137:1666–1686

    Article  Google Scholar 

  • Behera SK, Yamagata T (2001) A dipole mode in the tropical Indian Ocean. Geophys Res Lett 28:327–330

    Article  Google Scholar 

  • Betts AK, Miller MJ (1986) A new convective adjustment scheme. Part II: single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Q J R Meteorol Soc 112:693–709

    Google Scholar 

  • Bielli S, Douville H, Pohl B (2010) Understanding the West African monsoon variability and its remote effects: an illustration of the grid point nudging methodology. Clim Dyn 35:159–174. doi:10.1007/s00382-009-0667-8

    Article  Google Scholar 

  • Boulard D, Pohl B, Crétat J, Vigaud N (2013) Downscaling large-scale climate variability using a regional climate model: the case of ENSO over Southern Africa. Clim Dyn 40:1141–1168. doi:10.1007/s00382-012-1400-6

    Article  Google Scholar 

  • Bowden JH, Otte TL, Nolte CG, Otte MJ (2012) Examining interior grid nudging techniques using two-way nesting in the WRF model for regional climate modeling. J Clim 25:2805–2823. doi:10.1175/JCLI-D-11-00167.1

    Article  Google Scholar 

  • Cassou C (2008) Intraseasonal interaction between the Madden–Julian Oscillation and the North Atlantic Oscillation. Nature 455:523–527. doi:10.1038/nature07286

    Article  Google Scholar 

  • Chen JH, Lin SJ (2011) The remarkable predictability of inter-annual variability of Atlantic hurricanes during the past decade. Geophys Res Lett 38:L11804. doi:10.1029/2011GL047629

    Google Scholar 

  • Crétat J, Pohl B (2012) How physical parameterizations can modulate internal variability in a regional climate model. J Atmos Sci 69:714–724. doi:10.1175/JAS-D-11-0109.1

    Article  Google Scholar 

  • Crétat J, Macron C, Pohl B, Richard Y (2011) Quantifying internal variability in a regional climate model: a case study for Southern Africa. Clim Dyn 37:1335–1356. doi:10.1007/s00382-011-1021-5

    Article  Google Scholar 

  • Crétat J, Vizy EK, Cook KH (2013) How well are daily intense rainfall events captured by current climate models over Africa? Clim Dyn. doi:10.1007/s00382-013-1796-7

    Google Scholar 

  • Davis C, Wang W, Chen SS, Chen Y, Corbosiero K, DeMaria M, Dudhia J, Holland G, Klemp J, Michalakes J, Reeves H, Rotunno R, Snyder C, Xiao Q (2008) Prediction of landfalling hurricanes with advanced hurricane WRF model. Mon Weather Rev 136:1990–2005

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Holm EV, Isaksen L, Kallberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Donald A, Meinke H, Power B, Maia AHN, Wheeler MC, White N, Stone RC, Ribbe J (2006) Near-global impact of the Madden–Julian Oscillation on rainfall. Geophys Res Lett 33:L09704. doi:10.1029/2005GL025155

    Google Scholar 

  • Douville H (2009) Stratospheric polar vortex influence on northern hemisphere winter climate variability. Geophys Res Lett 36:L18703. doi:10.1029/2009GL039334

    Article  Google Scholar 

  • Douville H, Bielli S, Cassou C, Déqué M, Hall NMJ, Tyteca S, Voldoire A (2011) Tropical influence on boreal summer mid-latitude stationary waves. Clim Dyn 37:1783–1798. doi:10.1007/s00382-011-0997-1

    Article  Google Scholar 

  • Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107

    Article  Google Scholar 

  • Duvel JP, Vialard J (2007) Indo-Pacific sea surface temperature perturbations associated with intraseasonal oscillations of the tropical convection. J Clim 20:3056–3082

    Article  Google Scholar 

  • Gaetani M, Pohl B, Douville H, Fontaine B (2011) West African monsoon influence on the summer Euro-Atlantic circulation. Geophys Res Lett 38:L09705. doi:10.1029/2011GL047150

    Google Scholar 

  • Grell GA, Dévényi D (2002) A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett 29:1693. doi:10.1029/2002GL015311

    Article  Google Scholar 

  • Guilyardi E, Bellenger H, Collins M, Ferrett S, Cai W, Wittenberg A (2012) A first look at ENSO in CMIP5. CLIVAR Exch 58(17):29–32

    Google Scholar 

  • Hagos S, Leung LR, Dudhia J (2011) Thermodynamics of the Madden–Julian Oscillation in a regional model with constrained moisture. J Atmos Sci 68:1974–1989. doi:10.1175/2011JAS3592.1

    Article  Google Scholar 

  • Heikkilä U, Sandvik A, Sorteberg A (2011) Dynamical downscaling of ERA-40 in complex terrain using the WRF regional climate model. Clim Dyn 37:1551–1564. doi:10.1007/s00382-010-0928-6

    Article  Google Scholar 

  • Hong SY, Lim JOJ (2006) The WRF single-moment 6-class microphysics scheme (WSM6). J Korean Meteorol Soc 42:129–151

    Google Scholar 

  • Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341

    Article  Google Scholar 

  • Janjic ZI (1994) The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Weather Rev 122:927–945

    Article  Google Scholar 

  • Jung T, Palmer T, Rodwell M, Serrar S (2008) Diagnosing forecast error using relaxation experiments. ECMWF Newslett 116(24):34

    Google Scholar 

  • Kain JS (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181

    Article  Google Scholar 

  • Kessler WS (2001) EOF representation of the Madden–Julian oscillation and its connection with ENSO. J Clim 14:3055–3061

    Article  Google Scholar 

  • Kim HM, Hoyos CD, Webster PJ, Kang IS (2010) Ocean–atmosphere coupling and the boreal winter MJO. Clim Dyn 35:771–784. doi:10.1007/s00382-009-0612-x

    Article  Google Scholar 

  • Lappen CL, Schumacher C (2012) Heating in the tropical atmosphere: what level of detail is critical for accurate MJO simulations in GCMs? Clim Dyn. doi:10.1007/s00382-012-1327-y

    Google Scholar 

  • Leduc M, Laprise R (2009) Regional climate model sensitivity to domain size. Clim Dyn 32:833–854. doi:10.1007/s00382-008-0400-z

    Article  Google Scholar 

  • Li C, Jia X, Ling J, Zhou W, Zhang C (2009) Sensitivity of MJO simulations to diabatic heating profiles. Clim Dyn 32:167–187. doi:10.1007/s00382-008-0455-x

    Article  Google Scholar 

  • Liebmann B, Smith CA (1996) Description of a complete (interpolated) outgoing longwave radiation dataset. Bull Am Meteorol Soc 77:1275–1277

    Google Scholar 

  • Lin JL (2007) The double-ITCZ problem in IPCC AR4 coupled GCMs: ocean–atmosphere feedback analysis. J Clim 20:4497–4525. doi:10.1175/JCLI4272.1

    Article  Google Scholar 

  • Lin JL, Kiladis GN, Mapes BE, Weickmann KM, Sperber KR, Lin W, Wheeler MC, Schubert SD, Del Genio A, Donner LJ, Emori S, Gueremy JF, Hourdin F, Rasch PJ, Roeckner E, Scinocca JF (2006) Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: convective signals. J Clim 19:2665–2690

    Article  Google Scholar 

  • Madden RA, Julian PR (1994) Observations of the 40–50-day tropical oscillation—a review. Mon Weather Rev 122:814–837

    Article  Google Scholar 

  • Marshall AG, Hudson D, Wheeler MC, Hendon HH, Alves O (2011) Assessing the simulation and prediction of rainfall associated with the MJO in the POAMA seasonal forecast system. Clim Dyn 37:2129–2141. doi:10.1007/s00382-010-0948-2

    Article  Google Scholar 

  • Matthews AJ (2004) Atmospheric response to observed intraseasonal tropical sea surface temperature anomalies. Geophys Res Lett 31:L14107. doi:10.1029/2004GL020474

    Article  Google Scholar 

  • Matthews AJ (2008) Primary and successive events in the Madden–Julian Oscillation. Q J R Meteorol Soc 134:439–453. doi:10.1002/qj.224

    Article  Google Scholar 

  • Matthews AJ, Singhruck P, Heywood KJ (2007) Deep ocean impact of a Madden–Julian Oscillation observed by Argo floats. Science 318:1765–1769. doi:10.1126/science.1147312

    Article  Google Scholar 

  • Matthews AJ, Singhruck P, Heywood KJ (2010) Ocean temperature and salinity components of the Madden–Julian oscillation observed by Argo floats. Clim Dyn 35:1149–1168. doi:10.1007/s00382-009-0631-7

    Article  Google Scholar 

  • Mlawer E, Taubman S, Brown P, Iacono M, Clough S (1997) Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J Geophys Res 102:16663–16682

    Article  Google Scholar 

  • Monin AS, Obukhov AM (1954) Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys Inst Acad Sci USSR 151:163–187 (in Russian)

    Google Scholar 

  • Nikiema O, Laprise R (2011) Budget study of the internal variability in ensemble simulations of the Canadian regional climate model at the seasonal scale. J Geophys Res 116:D16112. doi:10.1029/2011JD015841

    Article  Google Scholar 

  • Niu GY, Yang ZL, Mitchell KE, Chen F, Ek MB, Barlage M, Kumar A, Manning K, Niyogi D, Rosero E, Tewari M, Xia Y (2011) The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J Geophys Res 116:D12109. doi:10.1029/2010JD015139

    Article  Google Scholar 

  • Omrami H, Drobinski P, Dubos T (2012a) Optimal nudging strategies in regional climate modelling: investigation in a Big-Brother experiment over the European and Mediterranean regions. Clim Dyn. doi:10.1007/s00382-012-1615-6

    Google Scholar 

  • Omrami H, Drobinski P, Dubos T (2012b) Spectral nudging in regional climate modelling: how strongly should we nudge? Q J R Meteorol Soc 138:1808–1813. doi:10.1002/qj.1894

    Article  Google Scholar 

  • Pohl B, Camberlin P (2011) Intraseasonal and interannual zonal circulations over the equatorial Indian Ocean. Theor Appl Climatol 104:175–191. doi:10.1007/s00704-010-0336-1

    Article  Google Scholar 

  • Pohl B, Douville H (2011) Diagnosing GCM errors over West Africa using relaxation experiments. Part I: summer monsoon climatology and interannual variability. Clim Dyn 37:1293–1312. doi:10.1007/s00382-010-0911-2

    Article  Google Scholar 

  • Pohl B, Crétat J, Camberlin P (2011) Testing WRF capability in simulating the atmospheric water cycle over Equatorial East Africa. Clim Dyn 37:1357–1379. doi:10.1007/s00382-011-1024-2

    Article  Google Scholar 

  • Pollard RT, Rhines PB, Thompson RORY (1973) The deepening of the wind-mixed layer. Geophys Fluid Dyn 3:381–404

    Google Scholar 

  • Ratnam J, Behera S, Masumoto Y, Takahashi K, Yamagata T (2011) A simple regional coupled model experiment for summer-time climate simulation over southern Africa. Clim Dyn. doi:10.1007/s00382-011-1190-2

    Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    Google Scholar 

  • Separovic L, de Elia R, Laprise R (2012) Impact of spectral nudging and domain size in studies of RCM response to parameter modification. Clim Dyn 38:1325–1343. doi:10.1007/s00382-011-1072-7

    Article  Google Scholar 

  • Simmons A, Uppala S, Dee D, Kobayashi S (2007) ERA-interim: new ECMWF reanalysis products from 1989 onwards. ECMWF Newslett 110:25–35

    Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda M, Huang XY, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. NCAR technical note, NCAR/TN\u2013475?STR, 123 p

  • Stensrud DJ (2007) Parameterization schemes. Keys to understanding numerical weather prediction models. Cambridge University Press, Cambridge. ISBN:9780521865401, 478 p

  • Subramanian AC, Jochum M, Miller AJ, Murtugudde R, Neale RB, Waliser DE (2011) The Madden–Julian Oscillation in CCSM4. J Clim 24:6261–6282. doi:10.1175/JCLI-D-11-00031.1

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106(D7):7183–7192

    Article  Google Scholar 

  • Vigaud N, Pohl B, Crétat J (2012) Tropical–temperate interactions over southern Africa simulated by a regional climate model. Clim Dyn. doi:10.1007/s00382-012-1314-3

    Google Scholar 

  • Von Storch H, Langenberg H, Feser F (2000) A spectral nudging technique for dynamical downscaling purposes. Mon Weather Rev 128:3664–3673

    Article  Google Scholar 

  • Waliser DE, Sperber K, Hendon H, Kim D, Maloney E, Wheeler M, Weickmann K, Zhang C, Donner L, Gottschalck J, Higgins W, Kang IS, Legler D, Moncrieff M, Schubert S, Stern W, Vitart F, Wang B, Wang W, Woolnough S (2009) MJO simulation diagnostics. J Clim 22:3006–3030. doi:10.1175/2008JCLI2731.1

    Article  Google Scholar 

  • Wheeler MC, Hendon HH (2004) An all-season real-time multivariate MJO index: development of an index for monitoring and prediction. Mon Weather Rev 132:1917–1932

    Article  Google Scholar 

  • Wheeler MC, McBride JL (2011) Australasian monsoon. In: Lau WKM, Waliser DE (eds) Intraseasonal variability in the atmosphere–ocean climate system, 2nd edn. Springer, New York, pp 147–198

    Google Scholar 

  • Wheeler MC, Hendon HH, Cleland S, Meinke H, Donald A (2009) Impacts of the Madden–Julian oscillation on Australian rainfall and circulation. J Clim 22:1482–1498

    Article  Google Scholar 

  • Zhang CD, Dong M, Gualdi S, Hendon HH, Maloney ED, Marshall A, Sperber KR, Wang WQ (2006) Simulations of the Madden–Julian oscillation in four pairs of coupled and uncoupled global models. Clim Dyn 27:573–592. doi:10.1007/s00382-006-0148-2

    Article  Google Scholar 

  • Zhang C, Gottschalck J, Maloney ED, Moncrieff MW, Vitart F, Waliser DE, Wang B, Wheeler MC (2013) Cracking the MJO nut. Geophys Res Lett 40. doi:10.1002/grl.50244

  • Zhou L, Neale RB, Jochum M, Murtugudde R (2012) Improved Madden–Julian Oscillations with improved physics: the impact of modified convection parameterizations. J Clim 25:1116–1136. doi:10.1175/2011JCLI4059.1

    Article  Google Scholar 

Download references

Acknowledgments

This article is a contribution to the LEFE/IDAO VOASSI program funded by CNRS. WRF was provided by the University Corporation for Atmospheric Research website (http://www.mmm.ucar.edu/wrf/users/download/get_source.html). ERA-Interim data were provided by the ECMWF Meteorological Archival and Retrieval System (MARS). Constructive comments from two anonymous reviewers helped improve the manuscript. Calculations were performed using HPC resources from DSI-CCUB, Université de Bourgogne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Pohl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pohl, B., Crétat, J. On the use of nudging techniques for regional climate modeling: application for tropical convection. Clim Dyn 43, 1693–1714 (2014). https://doi.org/10.1007/s00382-013-1994-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1994-3

Keywords

Navigation