Skip to main content

Advertisement

Log in

Winter-to-spring temperature dynamics in Turkey derived from tree rings since AD 1125

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

In the eastern Mediterranean in general and in Turkey in particular, temperature reconstructions based on tree rings have not been achieved so far. Furthermore, centennial-long chronologies of stable isotopes are generally also missing. Recent studies have identified the tree species Juniperus excelsa as one of the most promising tree species in Turkey for developing long climate sensitive stable carbon isotope chronologies because this species is long-living and thus has the ability to capture low-frequency climate signals. We were able to develop a statistically robust, precisely dated and annually resolved chronology back to AD 1125. We proved that variability of δ13C in tree rings of J. excelsa is mainly dependent on winter-to-spring temperatures (January–May). Low-frequency trends, which were associated with the medieval warm period and the little ice age, were identified in the winter-to-spring temperature reconstruction, however, the twentieth century warming trend found elsewhere could not be identified in our proxy record, nor was it found in the corresponding meteorological data used for our study. Comparisons with other northern-hemispherical proxy data showed that similar low-frequency signals are present until the beginning of the twentieth century when the other proxies derived from further north indicate a significant warming while the winter-to-spring temperature proxy from SW-Turkey does not. Correlation analyses including our temperature reconstruction and seven well-known climate indices suggest that various atmospheric oscillation patterns are capable of influencing the temperature variations in SW-Turkey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Akkemik Ü (2000) Dendroclimatology of umbrella pine (Pinus pinea L.) in Istanbul (Turkey). Tree-Ring Bull 56:17–20

    Google Scholar 

  • Akkemik Ü (2003) Tree rings of Cedrus libani at the northern boundary of its natural distribution. IAWA J 24:63–73

    Article  Google Scholar 

  • Akkemik Ü, Aras A (2005) Reconstruction (1689–1994) of April-August precipitation in southwestern part of central Turkey. Int J Climatol 25:537–548

    Article  Google Scholar 

  • Akkemik Ü, Dagdeviren N, Aras A (2005) A preliminary reconstruction (A.D. 1635–2000) of spring precipitation using oak tree rings in the western Black Sea region of Turkey. Int J Biometeorol 49:297–302. doi:10.1007/s00484-004-0249-8

    Article  Google Scholar 

  • Akkemik Ü, D’Arrigo R, Cherubini P, Köse N, Jacoby GC (2008) Tree-ring reconstructions of precipitation and streamflow for north-western Turkey. Int J Climatol 28:173–183

    Article  Google Scholar 

  • Allan R, Lindesay J, Parker D (1996) El Niño southern oscillation and climatic variability. CSIRO Publishing, Collingwood

    Google Scholar 

  • Alpert P, Baldi M, Ilani R, Krichak S, Price C, Rodó X, Saaroni H, Ziv B, Kishcha P, Barkan J, Mariotti A, Xoplaki E (2006) Relations between climate variability in the Mediterranean region and the tropics: ENSO, South Asian and African monsoons, hurricanes and Saharan dust. In: Lionello P, Malanotte-Rizzoli P, Boscolo R (eds) Mediterranean climate variability. Elsevier, Amsterdam, pp 149–177

    Google Scholar 

  • Bahrenberg G, Giese E, Nipper J (1990) Statistische Methoden in der Geographie. Bd. 1 Univariate und bivariate Statistik. Teubner, Stuttgart

  • Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115:1083–1126

    Article  Google Scholar 

  • Beerling DJ (1996) 13C discrimination by fossil leaves during the late-glacial climate oscillation 12–10 ka BP: measurements and physiological controls. Oecologia 108:29–37

    Article  Google Scholar 

  • Ben-Gai T, Bitan A, Manes A, Alpert P, Rubin S (1999) Temporal and spatial trends of temperature patterns in Israel. Theor Appl Climatol 64:163–177

    Article  Google Scholar 

  • Ben-Gai T, Bitan A, Manes A, Alpert P, Kushnir Y (2001) Temperature and surface pressure anomalies in Israel and the North Atlantic Oscillation. Theor Appl Climatol 69:171–177

    Article  Google Scholar 

  • Bottema S, Woldring H (1990) Anthropogenic indicators in the pollen record of the Eastern Mediterranean. In: Bottema S, Entjes-Nieborg G, van Zeist W (eds) Man’s role in the shaping of the eastern Mediterranean landscape. Balkema, Rotterdam, pp 231–264

    Google Scholar 

  • Brázdil R, Pfister C, Wanner H, von Storch H, Luterbacher J (2005) Historical climatology in Europe—the state of the art. Clim Change 70:363–430

    Article  Google Scholar 

  • Chou Y (1972) Probability and statistics for decision making. Holt, Rinehart, Winston, NY

    Google Scholar 

  • Conte M, Giuffrida S, Tedesco S (1989) The Mediterranean oscillation: impact on precipitation and hydrology in Italy. In: Proceedings of the conference on climate and water, vol 1. Publications of Academy of Finland, Helsinki, pp 121–137

  • Cook ER, Kairiukstis LA (1990) Methods of dendrochronology. Kluver, Dordrecht

    Book  Google Scholar 

  • Cook ER, Briffa KR, Jones PD (1994) Spatial regression methods in dendroclimatology: a review and comparison of two techniques. Int J Climatol 14:379–402

    Article  Google Scholar 

  • Corte-Real J, Zhang X, Wang X (1995) Large-scale circulation regimes and surface climatic anomalies over the Mediterranean. Int J Climatol 15:1135–1150

    Article  Google Scholar 

  • D’Arrigo R, Cullen HM (2001) A 350-year (AD 1628–1980) reconstruction of Turkish precipitation. Dendrochronologia 19:169–177

    Google Scholar 

  • Davis JC (1986) Statistics and data analysis in geology, 2nd edn. Wiley, New York

    Google Scholar 

  • Dorado Liñán I, Gutierrez E, Helle G, Heinrich I, Andreu-Hayles L, Plannels O, Leuenberger M, Bürger C, Schleser G (2011) Pooled versus separate measurements of tree-ring stable isotopes. Sci Total Environ 409:2244–2251

    Article  Google Scholar 

  • Elsig J, Schmitt J, Leuenberger D, Schneider R, Eyer M, Leuenberger M, Joos F, Fischer H, Stocker TF (2009) Stable isotope constraints on Holocene carbon cycle changes from an Antarctic ice core. Nature 461:507–510. doi:10.1038/nature08393

    Article  Google Scholar 

  • Esper J, Cook ER, Krusic PJ, Peters K, Schweingruber FH (2003) Tests of the RCS method for preserving low-frequency variability in long tree-ring chronologies. Tree-Ring Res 59:81–98

    Google Scholar 

  • Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137

    Article  Google Scholar 

  • Feidas H, Makrogiannis T, Bora-Senta F (2004) Trend analysis of air temperature time series in Greece and their relationship with circulation using surface and satellite data: 1955–2001. Theor Appl Climatol 79:185–208

    Article  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Blackburn Press, Caldwell

    Google Scholar 

  • Gagen M, McCarroll D, Edouard J-L (2004) Latewood width, maximum density, and stable carbon isotope ratios of pine as climate indicators in a dry subalpine environment, French Alps. Arct Antarct Alp Res 36:166–171

    Article  Google Scholar 

  • Gagen M, McCarroll D, Edouard J-L (2006) Combining tree ring width, density and stable carbon isotope series to enhance the climate signal in tree rings: an example from the French Alps. Clim Change 78:363–379

    Article  Google Scholar 

  • Gassner G, Christiansen-Weniger F (1942) Dendroklimatologische Untersuchungen über die Jahresringentwicklung der Kiefern in Anatolien. Nova Acta Leopold 12:1–137

    Google Scholar 

  • Griggs CB, Degaetano AT, Kuniholm PI, Newton MW (2007) A regional reconstruction of May-June precipitation in the north Aegean from oak tree-rings, AD 1089–1989. Int J Climatol 27:1075–1089

    Article  Google Scholar 

  • Grove JM (1988) The little ice age. Methuen, London

    Book  Google Scholar 

  • Guan Z, Yamagata T (2003) The unusual summer of 1994 in East Asia: IOD Teleconnections. Geophys Res Lett. doi:10.1029/2002GL016831

    Google Scholar 

  • Hasanean HM (2004) Wintertime surface temperature in Egypt in relation to the associated atmospheric circulation. Int J Climatol 24:985–999. doi:10.1002/joc.1043

    Article  Google Scholar 

  • Heinrich I, Weidner K, Helle G, Vos H, Lindesay J, Banks JCG (2009) Interdecadal modulation of the relationship between ENSO, IPO and precipitation: insights from tree rings in Australia. Climate Dyn 33:63–73. doi:10.1007/s00382-009-0544-5

    Article  Google Scholar 

  • Holmes RL (1994) Dendrochronolgy program manual. Laboratory of Tree-Ring Research, Tucson

    Google Scholar 

  • Hughes MK, Kuniholm PI, Garfin GM, Latini C, Eischeid J (2001) Aegean tree-ring signature years explained. Tree-Ring Res 57:67–73

    Google Scholar 

  • Hughes MK, Swetnam TW, Diaz HF (2010) Dendroclimatology: developments in paleoenvironmental research

  • Hurrell JW (1996) Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature. Geophys Res Lett 23:665–668

    Article  Google Scholar 

  • Jahren AH, Arens NC, Harbeson SA (2008) Prediction of atmospheric δ13CO2 using fossil plant tissues. Rev Geophys 46:1–12

    Article  Google Scholar 

  • Jenkins GM, Watts DG (1968) Spectral analysis and its applications. Holden-Day, San Francisco

    Google Scholar 

  • Jones PD, Hulme M (1996) Calculating regional climatic time series for temperature and precipitation: methods and illustrations. Int J Climatol 16:361–377

    Article  Google Scholar 

  • Kadıoğlu M (1997) Trends in surface air temperature data over Turkey. Int J Climatol 17:511–520

    Article  Google Scholar 

  • Kadıoğlu M, Tulunay Y, Borhan Y (1999) Variability of Turkish precipitation compared to El Nino events. Geophys Res Lett 26:1597–1600

    Article  Google Scholar 

  • Köse N, Akkemik Ü, Dalfes HN, Özeren MS (2011) Tree-ring reconstructions of May–June precipitation for western Anatolia. Quat Res 75:438–450. doi:10.1016/j.yqres.2010.12.005

    Article  Google Scholar 

  • Krichak SO, Alpert P (2005) Decadal trends in the east Atlantic–west Russia pattern and Mediterranean precipitation. Int J Climatol 25:183–192. doi:10.1002/joc.1124

    Article  Google Scholar 

  • Krichak SO, Kishcha P, Alpert P (2002) Decadal trends of main Eurasian oscillations and the Mediterranean precipitation. Theor Appl Climatol 72:209–220

    Article  Google Scholar 

  • Kuniholm PE (1990) Archaeological evidence and non-evidence for climatic change. In: Runcorn SJ, Peckers J-C (eds) The Earth’s climate and variability of the sun over recent millennia. Philosophical Transactions of the Royal Society of London A 645–655

  • Kutiel H, Benaroch Y (2002) North Sea-Caspian pattern (NCP)—an upper level atmospheric teleconnection affecting the Eastern Mediterranean: identification and definitions. Theor Appl Climatol 71:17–28

    Article  Google Scholar 

  • Kutiel H, Maheras P (1998) Variations in the temperature regime across the Mediterranean during the last century and their relationship with circulation indices. Theor Appl Climatol 61:39–53

    Article  Google Scholar 

  • Kutiel H, Türkeş M (2005) New evidence about the role of the North Sea-Caspian pattern (NCP) on the temperature and precipitation regimes in continental central Turkey. Geogr Ann A 87:501–513

    Article  Google Scholar 

  • Kutiel H, Maheras P, Türkeş M, Paz S (2002) North Sea-Caspian pattern (NCP)—an upper level atmospheric teleconnection affecting the eastern Mediterranean—implications on the regional climate. Theor Appl Climatol 72:173–192

    Article  Google Scholar 

  • Leavitt SW, Long A (1984) Sampling strategy for stable carbon isotope analysis of tree rings in pine. Nature 301:145–147

    Article  Google Scholar 

  • Leuenberger M (2007) To what extent can ice core data contribute to the understanding of plant ecological developments of the past? In: Dawson T, Siegwolf R (eds) Stable isotopes as indicators of ecological change. Academic Press, London, pp 211–234

    Chapter  Google Scholar 

  • Leuenberger M, Siegenthaler U, Langway CC (1992) Carbon isotope composition of atmospheric CO2 during the last ice-age from an Antarctic ice core. Nature 357:488–490

    Article  Google Scholar 

  • Loader NJ, Robertson I, Barker AC, Switsur VR, Waterhouse JS (1997) An improved technique for the batch processing of small wholewood samples to α-cellulose. Chem Geol 136:313–317

    Article  Google Scholar 

  • Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303:1499–1503

    Article  Google Scholar 

  • Maheras P, Kutiel H (1999) Spatial and temporal variations in the temperature regime in the Mediterranean and their relationship with circulation during the last century. Int J Climatol 19:745–764

    Article  Google Scholar 

  • Maheras P, Patrikas I, Karacostas T, Anagnostopoulou C (2000) Automatic classification of circulation types in Greece: methodology, description, frequency, variability and trend analysis. Theor Appl Climatol 67:205–223

    Article  Google Scholar 

  • Mann ME, Zhang Z, Hughes MK, Bradley RS, Miller SK, Rutherford S, Ni F (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Natl Acad Sci USA 105:13252–13257

    Article  Google Scholar 

  • McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quat Sci Revi 23:771–801

    Article  Google Scholar 

  • McCarroll D, Gagen MH, Loader NJ, Robertson I, Anchukaitis KJ, Los S, Young GHF, Jalkanen R, Kirchhefer AJ, Waterhouse JS (2009) Correction of tree ring stable carbon isotope chronologies for changes in the carbon dioxide content of the atmosphere. Geochim Cosmochim Acta 73:1539–1547

    Article  Google Scholar 

  • Meko DM (1981) Applications of Box-Jenkins Methods of time-series analysis to reconstruction of drought from tree rings, Ph.D. Dissertation, University of Arizona, Tucson, p 149

  • Mitchell JM Jr, Dzerdzeevskii B, Flohn H, Hofmeyr WL, Lamb HH, Rao KN, Wallen CC (1966) Climate change. Report of a working group of the Commission for Climatology, World Meteorological Organization Technical Note 79, Geneva

  • Moberg A, Sonechkin DM, Holmgren K, Datsenko NM, Karlén W (2005) Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433:613–617

    Article  Google Scholar 

  • Naumann C (1893) Vom Goldenen Horn zu den Quellen des Euphrat: Munich, Leipzig

  • Panzac D (1985) La Peste Dans I’empire Ottoman 1700–1850. Editions Peeters, Louvain

    Google Scholar 

  • Pozo-Vázquez D, Gámiz-Fortis SR, Tovar-Pescador J, Esteban-Parra MJ, Castro-Díez Y (2005) El Niño-Southern Oscillation events and associated European winter precipitation anomalies. Int J Climatol 25:17–31

    Article  Google Scholar 

  • Proedrou M, Theoharatos G, Cartalis C (1997) Variations and trends in annual and seasonal air temperature in Greece determined from the ground and satellite measurements. Theor Appl Climatol 57:65–78

    Article  Google Scholar 

  • Ribera P, Garcia R, Diaz HF, Gimeno L, Hernandez E (2000) Trends and interannual oscillations in the main sea-level surface pressure patterns over the Mediterranean 1955–1990. Geophys Res Lett 27:1143–1146. doi:10.1029/1999GL010899

    Article  Google Scholar 

  • Rinn F (2003) TSAP-win: time series analysis and presentation for dendrochronology and related applications. Frank Rinn, Heidelberg

    Google Scholar 

  • Roberts N (1998) The Holocene: an environmental history. Blackwell, Oxford

    Google Scholar 

  • Rodwell MJ, Hoskins BJ (1996) Monsoons and the dynamics of deserts. Q J R Meteorol Soc 122:1385–1404

    Article  Google Scholar 

  • Saji NH, Yamagata T (2003) Possible impacts of Indian Ocean dipole mode events on global climate. Climate Res 25:151–169

    Article  Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    Google Scholar 

  • Saurer M, Cherubini P, Bonani G, Siegwolf R (2003) Tracing carbon uptake from a natural CO2 spring into tree rings: an isotope approach. Tree Physiol 23:997–1004

    Article  Google Scholar 

  • Schönwiese CD (2008) Klimatologie. Ulmer, Stuttgart

    Google Scholar 

  • Schubert BA, Jahren AH (2012) The effect of atmospheric CO2 concentration on carbon isotope fractionation in C3 land plants. Geochim Cosmochim Acta 96:29–43

    Google Scholar 

  • Schweingruber FH (1983) Der Jahrring. Standort, Methodik, Zeit und Klima in der Dendrochronologie. Paul Haupt, Bern

  • Sevgi O, Akkemik Ü (2007) A Dendroecological study on Pinus nigra Arn. on the different altitudes of northern slopes of Kazdagları, Turkey. Indian J Environ Biol 28:73–75

    Google Scholar 

  • Solanki SK, Usoskin IG, Kromer B, Schüssler M, Beer J (2004) An unusually active Sun during recent decades compared to the previous 11,000 years. Nature 431:1084–1087

    Article  Google Scholar 

  • Telelis IG (2005) Historical-climatological information from the time of the Byzantine Empire (4th–15th centuries AD). Hist Meteorol 2:41–50

    Google Scholar 

  • Telelis IG (2008) Climatic fluctuations in the Eastern Mediterranean and the Middle East AD 300–1500 from Byzantine documentary and proxy physical palaeoclimatic evidence—a comparison. Jahrb Österr Byzantinistik 58:167–207

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (1998) The Artic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300

    Article  Google Scholar 

  • Touchan R, Garfin GM, Meko DM, Funkhouser G, Erkan N, Hughes MK, Wallin BS (2003) Preliminary reconstructions of spring precipitation in southwestern Turkey from tree-ring width. Int J Climatol 23:157–171

    Article  Google Scholar 

  • Touchan R, Xoplaki E, Funkhouser G, Luterbacher J, Hughes MK, Erkan N, Akkemik U, Stephan J (2005) Reconstruction of spring/summer precipitation for the Eastern Mediterranean from tree ring widths and its connection to large-scale atmospheric circulation. Climate Dyn 25:75–98

    Article  Google Scholar 

  • Touchan R, Akkemik Ü, Hughes MK, Erkan N (2007) May–June precipitation reconstruction of southwestern Anatolia, Turkey during the last 900 years from tree rings. Quat Res 68:196–202

    Article  Google Scholar 

  • Treydte K, Schleser GH, Schweingruber FH, Winiger M (2001) The climatic significance of δ13C in subalpine spruces (Lötschental, Swiss Alps)—a case study with respect to altitude, exposure and soil moisture. Tellus 53:593–611

    Article  Google Scholar 

  • Treydte K, Schleser GH, Helle G, Frank DC, Winiger M, Haug GH, Esper J (2006) The twentieth century was the wettest period in northern Pakistan over the past millennium. Nature 440:1179–1182

    Article  Google Scholar 

  • Troeng E, Linder S (1982) Gas exchange in a 20-year-old stand of Scots pine. Physiol Plantarum 54:7–23

    Article  Google Scholar 

  • Türkeş M (1996) Spatial and temporal analysis of annual rainfall variations in Turkey. Int J Climatol 16:1057–1076

    Article  Google Scholar 

  • Türkeş M (1998) Influence of geopotential heights, cyclone frequency and Southern Oscillation on rainfall variations in Turkey. Int J Climatol 18:649–680

    Article  Google Scholar 

  • Türkeş M, Erlat E (2003) Precipitation changes and variability in Turkey linked to the North Atlantic oscillation during the period 1930–2000. Int J Climatol 23:1771–1796

    Article  Google Scholar 

  • Türkeş M, Erlat E (2008) Influence of the Arctic Oscillation on variability of winter mean temperatures in Turkey. Theor Appl Climatol 92:75–85. doi:10.1007/s00704-007-0310-8

    Article  Google Scholar 

  • Türkeş M, Erlat E (2009) Winter mean temperature variability in Turkey associated with the North Atlantic Oscillation. Meteorol Atmos Phys 105:211–225. doi:10.1007/s00703-009-0046-3

    Article  Google Scholar 

  • Türkeş M, Sümer U, Kiliç G (1995) Variations and trends in annual mean air temperatures in Turkey with respect to climatic variability. Int J Climatol 15:557–569

    Article  Google Scholar 

  • Türkeş M, Sümer UM, Kiliç G (2002a) Persistence and periodicity in the precipitation series of Turkey and associations with 500 hPa geopotential heights. Climate Res 21:59–81

    Article  Google Scholar 

  • Türkeş M, Sümer UM, Demir I (2002b) Re-evaluation of trends and changes in mean, maximum and minimum temperatures of Turkey for the period 1929–1999. Int J Climatol 22:947–977

    Article  Google Scholar 

  • Turkish General Directorate of Meteorology (2008) Weather Station Databanks of Turkish General Directorate of Meteorology, Ankara

  • van Oldenborgh GJ, Burgers G (2005) Searching for decadal variations in ENSO precipitation teleconnections. Geophys Res Lett 32:L15701. doi:10.1029/2005GL023110

    Article  Google Scholar 

  • Voelker SL, Muzika R-M, Guyette RP, Stambaugh MC (2006) Historical CO2 growth enhancement declines with age in Quercus and Pinus. Ecol Monogr 76:549–564

    Article  Google Scholar 

  • von Hammer-Purgstall J (1834–1836) Geschichte des osmanischen Reiches. Pesth, Hartleben

  • von Lürthe A (1991) Dendroökologische Untersuchungen an Kiefern und Eichen in den stadtnahen Berliner Forsten. Landschaftsentwicklung und Umweltforschung. Schriftenreihe des Fachbereichs Landschaftsentwicklung der TU Berlin 77, p 186

  • Wahl ER, Anderson DM, Bauer BA, Buckner R, Gille EP, Gross WS, Hartman M, Shah A (2010) An archive of high-resolution temperature reconstructions over the past 2 + millennia. Geochem Geophys Geosyst 11:Q01001. doi:10.1029/2009GC002817

    Article  Google Scholar 

  • Wang D, Wang C, Yang X, Lu J (2005) Winter Northern Hemisphere surface air temperature variability associated with the Arctic Oscillation and North Atlantic Oscillation. Geophys Res Lett 32:L16706. doi:10.1029/2005GL022952

    Article  Google Scholar 

  • Werner A, Schönwiese C-D (2002) A statistical analysis of the North Atlantic Oscillation and its impact on European temperature. Global Atmos Ocean Syst 8:293–306

    Article  Google Scholar 

  • Wigley TML, Briffa K, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213

    Article  Google Scholar 

  • Wilson AT, Grinsted MJ (1977) 12C/13C in cellulose and lignin as palaeothermometers. Nature 265:133–135

    Article  Google Scholar 

  • Xoplaki E (2002) Climate variability over the Mediterranean. Ph.D. thesis, University of Bern, p 193

Download references

Acknowledgments

We thank Carmen Bürger and Christoph Küppers for their help in the laboratory. This research was funded by the EU project MILLENNIUM (#017008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo Heinrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinrich, I., Touchan, R., Dorado Liñán, I. et al. Winter-to-spring temperature dynamics in Turkey derived from tree rings since AD 1125. Clim Dyn 41, 1685–1701 (2013). https://doi.org/10.1007/s00382-013-1702-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1702-3

Keywords

Navigation