Skip to main content

Advertisement

Log in

Alpine snow cover in a changing climate: a regional climate model perspective

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

An analysis is presented of an ensemble of regional climate model (RCM) experiments from the ENSEMBLES project in terms of mean winter snow water equivalent (SWE), the seasonal evolution of snow cover, and the duration of the continuous snow cover season in the European Alps. Two sets of simulations are considered, one driven by GCMs assuming the SRES A1B greenhouse gas scenario for the period 1951–2099, and the other by the ERA-40 reanalysis for the recent past. The simulated SWE for Switzerland for the winters 1971–2000 is validated against an observational data set derived from daily snow depth measurements. Model validation shows that the RCMs are capable of simulating the general spatial and seasonal variability of Alpine snow cover, but generally underestimate snow at elevations below 1,000 m and overestimate snow above 1,500 m. Model biases in snow cover can partly be related to biases in the atmospheric forcing. The analysis of climate projections for the twenty first century reveals high inter-model agreement on the following points: The strongest relative reduction in winter mean SWE is found below 1,500 m, amounting to 40–80 % by mid century relative to 1971–2000 and depending upon the model considered. At these elevations, mean winter temperatures are close to the melting point. At higher elevations the decrease of mean winter SWE is less pronounced but still a robust feature. For instance, at elevations of 2,000–2,500 m, SWE reductions amount to 10–60 % by mid century and to 30–80 % by the end of the century. The duration of the continuous snow cover season shows an asymmetric reduction with strongest shortening in springtime when ablation is the dominant factor for changes in SWE. We also find a substantial ensemble-mean reduction of snow reliability relevant to winter tourism at elevations below about 1,800 m by mid century, and at elevations below about 2,000 m by the end of the century.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abegg B (1996) Klimaänderung und Tourismus. Klimafolgenforschung am Beispiel des Wintertourismus in den Schweizer Alpen. Vdf Zurich, Zurich

  • Abegg B, Agrawala S, Crick F, de Montfalcon A (2007) Climate change impacts and adaptation in winter tourism. In: Agrawala S (ed) Climate change in the European Alps. Adapting winter tourism and natural hazards management. OECD, Paris, pp 25–60

    Google Scholar 

  • Adam JC, Lettenmaier DP (2003) Adjustment of global gridded precipitation for systematic bias. J Geophys Res 108:4257. doi:10.1029/2002JD002499

    Article  Google Scholar 

  • Armstrong RL, Brun E (2008) Snow and climate: physical processes, surface energy exchange and modeling. Cambridge University Press, Cambridge

    Google Scholar 

  • Bavay M, Lehning M, Jonas T, Löwe H (2009) Simulations of future snow cover and discharge in Alpine headwater catchments. Hydrol Process 23:95–108. doi:10.1002/hyp.7195

    Article  Google Scholar 

  • Beniston M, Keller F, Koffi B, Goyette S (2003) Estimates of snow accumulation and volume in the Swiss Alps under changing climatic conditions. Theor Appl Climatol 76:125–140. doi:10.1007/s00704-003-0016-5

    Article  Google Scholar 

  • Bosshard T, Carambia M, Goergen K, Kotlarski S, Krahe P, Zappa M, Schär C (2011) Quantifying uncertainty sources in hydrological climate impact scenarios. Water Resour Res (submitted)

  • Brown RD, Mote PW (2009) The response of northern Hemisphere snow cover to a changing climate. J Clim 22:2124–2145. doi:10.1175/2008JCLI2665.1

    Article  Google Scholar 

  • Buerki R (2000) Klimaänderung und Wintertourismus im Obertoggenburg. In: Natur Forschung in der Region St. Gallen, Berichte der St. Gallischen (eds) Naturwissenschaftlichen Gesellschaft. 89:97–109

  • CH2011 (2011) Swiss climate change scenarios CH2011. Published by C2SM, MeteoSwiss, ETH, NCCR Climate, and OcCC. Zurich, Switzerland, ISBN 978-3 033-03065-7, 88 pp [available at http://www.ch2011.ch]

  • Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim Change 81:7–30. doi:10.1007/s10584-006-9210-7

    Article  Google Scholar 

  • Dutra E, Kotlarski S, Viterbo P, Balsamo G, Miranda PMA, Schaer C, Bissolli P, Jonas T (2011) Snow cover sensitivity to horizontal resolution, parameterizations and atmospheric forcing in a land surface model. J Geophys Res 116:D21109

    Article  Google Scholar 

  • Egli L, Jonas T, Meister R (2009) Comparison of different automatic methods for estimating snow water equivalent. Cold Reg Sci Technol 57:107–115. doi:10.1016/j.coldregions.2009.02.008

    Article  Google Scholar 

  • Elsasser H, Buerki R (2002) Climate change as a threat to tourism in the Alps. Clim Res 20:253–257

    Article  Google Scholar 

  • Foppa N, Stoffel A, Meister R (2007) Synergy of in situ and space borne observation for snow depth mapping in the Swiss Alps. Int J Appl Earth Observ Geoinf 9(3):294–310. doi:10.1016/j.jag.2006.10.001

    Article  Google Scholar 

  • Fowler HJ, Blekinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modeling. Int J Climatol 27:1547–1578. doi:10.1002/joc.1556

    Article  Google Scholar 

  • Fyfe JC, Flato GM (1999) Enhanced climate change and its detection over the rocky mountains. J Clim 12:230–243

    Article  Google Scholar 

  • Giorgi F, Hurrell JW, Marinucci MR (1997) Elevation dependency of the surface climate change signal: a model study. Clim Change 10:288–296

    Google Scholar 

  • Giorgi F, Francisco R, Pal J (2003) Effects of a subgrid-scale topography and land use scheme on the simulation of surface climate and hydrology. Part I: effects of temperature and water vapor disaggregation. J Hydromet 4:317–333

    Article  Google Scholar 

  • Hall A (2004) The role of surface albedo feedback in climate. Am Meteorol Soc 17:1550–1568

    Google Scholar 

  • Hänggi P, Angehrn S, Bosshard T, Helland E, Job D, Rietmann D, Schädler B, Schneider R, Weingartner R (2011) Einfluss der Klimaänderung auf die Stromproduktion der Wasserkraftwerke Löntsch und Prättigau. Wasser Energie Luft 103(4):292–299

    Google Scholar 

  • Hantel M, Hirtl-Wielke L-M (2007) Sensitivity of Alpine snow cover to European temperature. Int J Clim 27:1265–1275

    Article  Google Scholar 

  • Hantel M, Maurer C (2011) The median winter snowline in the Alps. Meteorol Z 20(3):267–276

    Article  Google Scholar 

  • Haylock MR, Hofstra N, Klein-Tank AMG, Klok EJ (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113:D20119. doi:10.1029/2008JD01201

    Article  Google Scholar 

  • Henderson GR, Leathers DJ (2010) European snow cover extent variability and associations with atmospheric forcings. Int J Climatol 30:1440–1451. doi:10.1002/joc.1990

    Google Scholar 

  • Jonas T, Rixen C, Sturm M, Stoeckli V (2008) How alpine plant growth is linked to snow cover and climate variability. J Geophys Res 113:G03013. doi:10.1029/2007JG000680

    Article  Google Scholar 

  • Jonas T, Marty C, Magnusson J (2009) Estimating the snow water equivalent from snow depth measurements in the Swiss Alps. J Hydrol 378:161–167. doi:10.1016/j.jhydrol.2009.09.021

    Article  Google Scholar 

  • Kobierska F, Jonas T, Zappa M, Bavay M, Magnusson J, Bernasconi SM (2012) Future runoff from a partly glacierized watershed in Central Switzerland: a two-model approach. Adv Water Resour (submitted)

  • Kotlarski S, Bosshard T, Lüthi D, Pall P, Schär C (2012) Elevation gradients of European climate change in the regional climate model COSMO-CLM. Clim Change (in press). doi:10.1007/s10584-011-0195-5

  • Laternser M, Schneebeli M (2003) Long-term snow climate trends of the Swiss alps (1931–99). Int J Climatol 23:733–750. doi:10.1002/joc.921

    Article  Google Scholar 

  • Lenderink G, Buishand A, van Deursen W (2007) Estimates of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach. Hydrol Earth Syst Sci 11(3):1145–1159

    Article  Google Scholar 

  • Magnusson J, Jonas T, López-Moreno I, Lehning M (2010) Snow cover response to climate change in a high alpine and half-glacierized basin in Switzerland. Hydrol Res 41(3–4):230–240

    Article  Google Scholar 

  • Marchand PJ (1996) Life in the cold: an introduction to winter ecology. University Press of New England, Hanover

    Google Scholar 

  • Martin E, Etchevers P (2005) Impact of climatic changes on snow cover and snow hydrology in the French Alps. Adv Glob Change Res 23:235–242. doi:10.1007/1-4020-3508-X_24

    Article  Google Scholar 

  • Marty C (2008) Regime shift of snow days in Switzerland. Geophys Res Lett 35:L12501. doi:10.1029/2008GL022998

    Article  Google Scholar 

  • Nakicenovic N, Swart R (eds) (2000) Emission scenarios. A special report of working group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, England

    Google Scholar 

  • Norris JR, Wild M (2007) Trends in aerosol radiative effects over Europe inferred from observed cloud cover, solar “dimming”, and solar “brightening”. J Geophys Res 112:D08214. doi:10.1029/2006JD007794

    Article  Google Scholar 

  • Räisänen J (2008) Warmer climate: less or more snow? Clim Dyn 30:307–319. doi:10.1007/s00382-007-0289-y

    Article  Google Scholar 

  • Räisänen J, Eklund J (2012) 21st century changes in snow climate in Northern Europe: a high-resolution view from ENSEMBLES regional climate models. Clim Dyn 38:2575–2591. doi:10.1007/s00382-011-1076-3

    Article  Google Scholar 

  • Rangwala I, Miller JR (2012) Climate change in mountains: a review of elevation-dependent warming and its possible causes. Clim Change (in press). doi:10.1007/s10584-012-0419-3

  • Rockel B, Will A, Hense A (2008) The regional climate model COSMO-CLM (CCLM). Meteorol Z 17(4):347–348

    Article  Google Scholar 

  • Salzmann N, Mearns L (2011) Assessing the performance of multiple regional climate model simulations for seasonal mountain snow in the Upper Colorado River Basin. J Hydrometeor (in press). doi:10.1175/2011JHM1371.1

  • Schär C, Davis TD, Frei C, Wanner H, Widmann M, Wild M, Davis HC (1998) Views from the Alps: regional perspectives on climate. MIT press, Boston

    Google Scholar 

  • Scherrer SC, Appenzeller C (2006) Swiss Alpine snow pack variability: major patterns and links to local climate and large-scale flow. Clim Res 32:187–199

    Article  Google Scholar 

  • Scott D, McBoyle G (2007) Climate change adaptation in the ski industry. Mitig Adapt Strat Glob Change 12:1411–1431

    Article  Google Scholar 

  • Scott D, McBoyle G, Mills B (2003) Climate change and the skiing industry in southern Ontario (Canada): exploring the importance of snowmaking as a technical adaptation. Clim Res 23:171–181

    Article  Google Scholar 

  • Sevruk B (1997) Regional dependency of precipitation-altitude relationship in the Swiss Alps. Clim Change 36:355–369

    Article  Google Scholar 

  • Stähli M, Raymond-Pralong M, Zappa M, Ludwig A, Paul F, Bosshard T, Dupraz C (2011) Auswirkungen auf die Wasserverfügbarkeit und Stromproduktion an den Beispielen Oberhasli und Mattmark. Wasser Energie Luft 103(4):285–291

    Google Scholar 

  • Steiger R (2010) The impact of climate change on ski season length and snowmaking requirements in Tyrol, Austria. Clim Res 43:251–262. doi:10.3354/cr00941

    Article  Google Scholar 

  • Uppala SM, Kallberg PW, Simmons AJ, Andrae U, Da Costa Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf J-F, Morcrette J-J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Quart J Roy Meteor Soc 131:2961–3012

    Article  Google Scholar 

  • van der Linden P, Mitchell JFB (2009) ENSEMBLES: climate change and its Impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, Exeter 160 pp

    Google Scholar 

  • Voigt T, Fuessel HM, Gaertner-Roer I, Huggel C, Marty C, Zemp M (2010) Impacts of climate change on snow, ice, and permafrost in Europe: observed trends, future projections, and socio-economic relevance—ETC./ACC Technical Paper 2010/13

  • Wielke L-M, Haimberger L, Hantel M (2004) Snow cover duration in Switzerland compared to Austria. Meteorol Z 13(1):13–17

    Article  Google Scholar 

  • Wood AW, Leung LR, Sridhar V, Lettenmaier DP (2004) Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Clim Change 62:189–216

    Article  Google Scholar 

  • Zemp M, Hoelzle M, Haeberli W (2007) Distributed modelling of the regional climatic equilibrium line altitude of glaciers in the European Alps. Glob Planet Change 56:83–100

    Article  Google Scholar 

Download references

Acknowledgments

The ENSEMBLES data used in this work was funded by the EU FP6 Integrated Project ENSEMBLES (Contract number 505539) whose support is gratefully acknowledged. We also acknowledge the E-OBS dataset from the ENSEMBLES project and the data providers in the ECA&D project (http://eca.knmi.nl). Partial funding for this study has been provided by the Swiss National Science Foundation via NCCR Climate. We would also like to thank Daniel Lüthi and C2SM for model and data support, and three anonymous reviewers for their very helpful and constructive input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Kotlarski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 4623 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steger, C., Kotlarski, S., Jonas, T. et al. Alpine snow cover in a changing climate: a regional climate model perspective. Clim Dyn 41, 735–754 (2013). https://doi.org/10.1007/s00382-012-1545-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1545-3

Keywords

Navigation