Skip to main content

Advertisement

Log in

SST and circulation trend biases cause an underestimation of European precipitation trends

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Clear precipitation trends have been observed in Europe over the past century. In winter, precipitation has increased in north-western Europe. In summer, there has been an increase along many coasts in the same area. Over the second half of the past century precipitation also decreased in southern Europe in winter. An investigation of precipitation trends in two multi-model ensembles including both global and regional climate models shows that these models fail to reproduce the observed trends. In many regions the model spread does not cover the trend in the observations. In contrast, regional climate model (RCM) experiments with observed boundary conditions reproduce the observed precipitation trends much better. The observed trends are largely compatible with the range of uncertainties spanned by the ensemble, indicating that the boundary conditions of RCMs are responsible for large parts of the trend biases. We find that the main factor in setting the trend in winter is atmospheric circulation, for summer sea surface temperature (SST) is important in setting precipitation trends along the North Sea and Atlantic coasts. The causes of the large trends in atmospheric circulation and summer SST are not known. For SST there may be a connection with the well-known ocean circulation biases in low-resolution ocean models. A quantitative understanding of the causes of these trends is needed so that climate model based projections of future climate can be corrected for these precipitation trend biases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Alexander LV, Arblaster JM (2009) Assessing trends in observed and modelled climate extremes over Australia in relation to future projections. Int J Climatol 29:417–435. doi:10.1002/joc.1730

    Article  Google Scholar 

  • Annan J, Hargreaves J (2010) Reliability of the CMIP3 ensemble. Geophys Res Lett. doi:10.1029/2009GL041994

  • Ashfaq M, Skinner C, Diffenbaugh N (2010) Influence of SST biases on future climate change projections. Clim Dyn, 1–17, doi:10.1007/s00382-010-0875-2

  • Bhend J, von Storch H (2008) Consistency of observed winter precipitation trends in northern Europe with regional climate change projections. Clim Dyn 31:17–28. doi:10.1007/s00382-007-0335-9

    Article  Google Scholar 

  • Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projectionsof changes in European climate by the end of the century. Clim Change 81:7–30. doi:10.1007/s10584-006-9210-7

    Article  Google Scholar 

  • Déqué M, Rowell D, Lthi D, Giorgi F, Christensen J, Rockel B, Jacob D, Kjellström E, de Castro M, van den Hurk B (2007) An intercomparison of regional climate simulations for europe: assessing uncertainties in model projections. Clim Change 81:53–70

    Article  Google Scholar 

  • Hawkins E, Sutton RT (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90:1095–1107. doi:10.1175/2009BAMS2607.1

    Article  Google Scholar 

  • Haylock MR, Hofstra N, Tank AMGK, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950-2006. J Geophys Res 113:D20119+. doi:10.1029/2008JD010201

    Article  Google Scholar 

  • Hegerl G, Zwiers F (2011) Use of models in detection and attribution of climate change. Wiley Interdisciplinary Reviews. Clim Change. doi:10.1002/wcc.121

  • Hudson D, Jones R (2002) Regional climate model simulations of present-day and future climates of Southern Africa. Technical note 39, Hadley Centre for Climate Prediction and Research

  • Hundecha Y, Bárdossy A (2005) Trends in daily precipitation and temperature extremes across western germany in the second half of the 20th century. Int J Climatol 25:1189–1202. doi:10.1002/joc.1182

    Article  Google Scholar 

  • Kjellström E, Ruosteenoja K (2007) Present-day and future precipitation in the Baltic Sea region as simulated in a suite of regional climate models. Clim Change 81:281–291. doi:10.1007/s10584-006-9219-y

    Article  Google Scholar 

  • Knutti R, Furrer R, Tebaldi C, Cermak J, Meehl GA (2009) Challenges in combining projections from multiple climate models. J Clim 23:2739–2758. doi:10.1175/2009JCLI3361.1

    Article  Google Scholar 

  • Lenderink G, van Meijgaard E, Selten F (2009) Intense coastal rainfall in the Netherlands in response to high sea surface temperatures: analysis of the event of August 2006 from the perspective of a changing climate. Clim Dyn 32:19–33

    Article  Google Scholar 

  • Meehl GA, Covey C, Delworth TL, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394. doi:10.1175/BAMS-88-9-1383

    Article  Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high resolution grids. Int J Climatol 25:693–712. doi:10.1002/joc.1181

    Article  Google Scholar 

  • Osborn TJ (2004) Simulating the winter North Atlantic Oscillation: the roles of internal variability and greenhouse gas forcing. Clim Dyn 22:605–623. doi:10.1007/s00382-004-0405-1

    Article  Google Scholar 

  • Osborn TJ, Conway D, Hulme M, Gregory JM, Jones PD (1999) Air flow influences on local climate: observed and simulated mean relationships for the United Kingdom. Clim Res 13:173–191. doi:10.3354/cr013173

    Article  Google Scholar 

  • Räisänen J (2007) How reliable are climate models? Tellus A 59:2–29. doi:10.1111/j.1600-0870.2006.00211.x

    Article  Google Scholar 

  • Rowell DP (2003) The impact of Mediterranean SSTs on the Sahelian rainfall season. J Clim 16:849–862

    Article  Google Scholar 

  • Rummukainen M, Bergstrom S, Persson G, Rodhe J, Tjernstrom M (2004) The Swedish regional climate modelling programme, SWECLIM: a review. Ambio 33:176–182. http://highwire.stanford.edu/cgi/medline/pmid;15264594

    Google Scholar 

  • Schneider U, Fuchs T, Meyer-Christoffer A, Rudolf B (2010) Global precipitation analysis products of the GPCC. Technical report, Global Precipitation Climatology Centre (GPCC), Deutscher Wetterdienst, Offenbach, Germany. http://gpcc.dwd.de

  • Turnpenny JR, Crossley JF, Hulme M, Osborn TJ (2002) Air flow influences on local climate: comparison of a regional climate model with observations over the United Kingdom. Clim Res 20:189–202. doi:10.3354/cr020189

    Article  Google Scholar 

  • van der Linden P, Mitchell JFB (eds) (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, Exeter, pp 160

  • van der Schrier G, Barkmeijer J (2007) North American 1818–1824 drought and 1825–1840 pluvial and their possible relation to the atmospheric circulation. J Geophys Res 112:D13102+. doi:10.1029/2007JD008429

    Google Scholar 

  • van Oldenborgh GJ, Drijfhout SS, van Ulden AP, Haarsma R, Sterl C, Severijns A, Hazeleger W, Dijkstra HA (2009a) Western Europe is warming much faster than expected. Clim Past 5:1–12. doi:10.5194/cp-5-1-2009

    Article  Google Scholar 

  • van Oldenborgh GJ, te Raa LA, Dijkstra HA, Philip SY (2009b) Frequency- or amplitude-dependent effects of the atlantic meridional overturning on the tropical pacific ocean. Ocean Sci 5:293–301. doi:10.5194/os-5-293-2009

    Article  Google Scholar 

  • van Oldenborgh GJ, van Ulden AP (2003) On the relationship between global warming, local warming in the Netherlands and changes in circulation in the 20th century. Int J Climatol 23:1711–1724. doi:10.1002/joc.966

    Article  Google Scholar 

  • van Ulden AP, van Oldenborgh GJ (2006) Large-scale atmospheric circulation biases and changes in global climate model simulations and their importance for climate change in Central Europe. Atmos Chem Phys 6:863–881. doi:10.5194/acp-6-863-2006

    Article  Google Scholar 

  • Wentz FJ, Ricciardulli L, Hilburn K, Mears C (2007) How much more rain will global warming bring? Science 317:233–235. doi:10.1126/science.1140746

    Article  Google Scholar 

  • Zhang X, Zwiers FW, Hegerl GC, Lambert FH, Gillett NP, Solomon S, Stott PA, Nozawa T (2007) Detection of human influence on twentieth-century precipitation trends. Nature 448:461–465. doi:10.1038/nature06025

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by the Dutch research program Knowledge for Climate. MC was partially supported by the NERC Changing Water Cycle PAGODA Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald van Haren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Haren, R., van Oldenborgh, G.J., Lenderink, G. et al. SST and circulation trend biases cause an underestimation of European precipitation trends. Clim Dyn 40, 1–20 (2013). https://doi.org/10.1007/s00382-012-1401-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1401-5

Keywords

Navigation