Skip to main content

Advertisement

Log in

Future projections of the surface heat and water budgets of the Mediterranean Sea in an ensemble of coupled atmosphere–ocean regional climate models

  • Published:
Climate Dynamics Aims and scope Submit manuscript

An Erratum to this article was published on 10 February 2012

Abstract

Within the CIRCE project “Climate change and Impact Research: the Mediterranean Environment”, an ensemble of high resolution coupled atmosphere–ocean regional climate models (AORCMs) are used to simulate the Mediterranean climate for the period 1950–2050. For the first time, realistic net surface air-sea fluxes are obtained. The sea surface temperature (SST) variability is consistent with the atmospheric forcing above it and oceanic constraints. The surface fluxes respond to external forcing under a warming climate and show an equivalent trend in all models. This study focuses on the present day and on the evolution of the heat and water budget over the Mediterranean Sea under the SRES-A1B scenario. On the contrary to previous studies, the net total heat budget is negative over the present period in all AORCMs and satisfies the heat closure budget controlled by a net positive heat gain at the strait of Gibraltar in the present climate. Under climate change scenario, some models predict a warming of the Mediterranean Sea from the ocean surface (positive net heat flux) in addition to the positive flux at the strait of Gibraltar for the 2021–2050 period. The shortwave and latent flux are increasing and the longwave and sensible fluxes are decreasing compared to the 1961–1990 period due to a reduction of the cloud cover and an increase in greenhouse gases (GHGs) and SSTs over the 2021–2050 period. The AORCMs provide a good estimates of the water budget with a drying of the region during the twenty-first century. For the ensemble mean, he decrease in precipitation and runoff is about 10 and 15% respectively and the increase in evaporation is much weaker, about 2% compared to the 1961–1990 period which confirm results obtained in recent studies. Despite a clear consistency in the trends and results between the models, this study also underlines important differences in the model set-ups, methodology and choices of some physical parameters inducing some difference in the various air-sea fluxes. An evaluation of the uncertainty sources and possible improvement for future generation of AORCMs highlights the importance of the parameterisation of the ocean albedo, rivers and cloud cover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeor 4:1147–1167

    Article  Google Scholar 

  • Andersson A, Bakan S, Fennig K, Grassl H, Klepp C, Schulz J (2007) Hamburg ocean atmosphere parameters and fluxes from satellite data—HOAPS-3—monthly mean. World Data Center for Climate

  • Artale V, Calmanti S, Malanotte-Rizzoli P, Pisacane G, Rupolo W, Tsimplis M (2005) Mediterranean climate variability. In: Lionello P, Malanotte-Rizzoli P, Boscolo R (eds) Elsevier, pp 282–323

  • Artale V, Calmanti S, Carillo A, Dell’Aquila A, Hermann M, Pisacane G, Ruti PM, Sannino G, Striglia MV, Giorgi F, Bi X, Pal JS, Rauscher S (2009) An atmosphere-ocean regional climate model for the mediterranean area: assessment of a present climate simulation. Clim Dyn 35:721–740

    Article  Google Scholar 

  • Artegiani A, Paschini E, Russo A, Bregant D, Raicich F, Pinardi N (1997a) The Adriatic Sea general circulation. Part I: air-sea interactions and water mass structure. J Phys Oceano 27:1514

    Google Scholar 

  • Artegiani A, Paschini E, Russo A, Bregant D, Raicich F, Pinardi N (1997b) The Adriatic Sea general circulation. Part II: Baroclinic circulation structure. J Phys Oceano 27:1532

    Google Scholar 

  • Bärring L, Laprise R (eds) (2005) High-resolution climate modelling: assessment, added value and applications. Extended Abstracts of a WMO/WCRP-sponsored regional-scale climate modelling Workshop, 29 March–2 April 2004, Lund (Sweden). Lund University electronic reports in physical geography, 132 pp. (http://www.nateko.lu.se/ELibrary/Lerpg/5/Lerpg5Article.pdf)

  • Baschek B, Send U, Garcia de la Fuente J, Candela J (2001) Transport estimates in the strait of Gibraltar with a tidal inverse model. J Geophys Res 112:31033–31044

    Article  Google Scholar 

  • Berry DI, Kent EC (2009) A new air-sea interaction gridded dataset from ICOADS with uncertainty estimates. Bull Am Meteor Soc 90:645–656

    Article  Google Scholar 

  • Béthoux J (1979) Budgets of the Mediterranean Sea. Their dependence on the local climate and on the characteristics of the Atlantic waters. Oceanol Acta 2(2):157–163

    Google Scholar 

  • Bethoux JP, Gentili B (1999) Functioning of the Mediterranean Sea: past and present changes related to freshwater input and climate changes. J Mar Syst 20:33–47

    Google Scholar 

  • Béthoux J, Gentili B, Taillez D (1999) Warming and freshwater budget change in the Mediterranean since the 1940 s, their possible relation to the greenhouse effect. Geophys Res Lett 25:1023–1026

    Article  Google Scholar 

  • Beuvier J, Sevault F, Herrmann M, Kontoyiannis H, Ludwig W, Rixen E, Stanev E, Béranger K, Somot S (2010) Modelling the Mediterranean Sea interannual variability over the last 40 years: focus on the eastern Mediterranean transient (EMT). J Geophys Res 115(C08017). doi:10.1029/2009JC005950

  • Bignami F, Marullo S, Santoleri R, Schiano ME (1995) Longwave radiation budget in the Mediterranean Sea. J Geophys Res 100(C2):2501–2514. doi:10.1029/94JC02496

    Article  Google Scholar 

  • Bryden HL, Kinder TH (1991) Steady two layer exchange through the strait of Gibraltar. Deep-Sea Res 38(Suppl. 1A):445–464

    Google Scholar 

  • Bryden HL, Candela J, Kinder TH (1994) Exchange through the strait of Gibraltar. Prog Oceanogr 33:201–248

    Article  Google Scholar 

  • Buck AL (1981) New equations for computing vapor pressure and enhancement factor. J Appl Meteorol 20:1527–1532

    Google Scholar 

  • Bunker AF, Charnock H, Goldsmith RA (1982) A note of the heat balance of the Mediterranean and Red Seas. J Mar Res 40(suppl):73–84

    Google Scholar 

  • Calmanti S, Artale V, Sutera A (2006) North Atlantic MOC variability and the Mediterranean Outflow: a box-model study. Tellus Ser A Dyn Meteorol Oceanogr 58(3):416–423. doi:10.1111/j.1600-0870.2006.00176.x

    Article  Google Scholar 

  • Candela PJ (2001) Mediterranean water and global circulation. In: Gerold S, John Church y John Gould (eds) Ocean circulation and climate. Observing and modelling the global ocean, vol. 77. Publicado (PA: CPOFH20001-2001)

  • Chen W, Zhihong J, Laurent L, Pascal Y (2011) Simulation of regional climate change under the IPCC A2 scenario in southeast China. Clim Dyn 36(3–4):491–507

    Article  Google Scholar 

  • Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim Change 81(Supplement 1):7–30. doi:10.1007/s10584-006-9210-7

    Article  Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Dell’Aquila A, Calmanti S, Ruti P, Struglia MV, Pisacane G, Carillo A, Sannino G (2012) Impacts of seasonal cycle fluctuations in an A1B scenario over the Euro-Mediterranean. Clim Res. doi:10.3354/cr01037

  • Déqué M, Piedelievre J-P (1995) High-resolution climate simulation over Europe. Clim Dyn 11:321–339

    Article  Google Scholar 

  • Drobinsky P, Ducrocq V (eds) (2008) HYMEX: white book. http://www.hymex.org/global/documents/WB_1.3.2.pdf

  • Dubois C, Sanchez E, Braun A, Soot S (2010) A gathering of observed air-sea surface fluxes over the Mediterranean Sea. Note de centre n°113, Météo-France

  • Dümenil Gates L, Hagemann S, Golz C (2000) Observed historical discharge data from major rivers for climate model validation. Internal report 307. Max Planck Institute for Meteorology

  • Egyptian Ministry of Water Resources and Irrigation (2002) Adopted measures to face major challenges in the Egyptian water sector, paper presented at the 3rd world water forum. World Water Council, Kyoto

    Google Scholar 

  • Elguindi N, Somot S, Déqué M, Ludwig W (2009) Climate change evolution of the hydrological balance of the Mediterranean, Black and Caspian Seas: impact of climate model resolution. Clim Dyn (in revision)

  • Elizalde A, Sein D, Mikolajewick U, Jacob D (2010) Technical report: atmosphere–ocean–hydrology coupled regional climate model. Max Planck Institute for Meteorology

  • García Lafuente J, Sánchez Román A, Díaz G, del Río G, Sannino JC, Garrido Sánchez (2007) Recent observations of seasonal variability of the Mediterranean outflow in the strait of Gibraltar. J Geophys Res 112:C10005. doi:10.1029/2006JC003992

    Article  Google Scholar 

  • Gibelin A-L, Déqué M (2003) Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution model. Clim Dyn 20:327–339

    Google Scholar 

  • Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33(8):L08707

    Article  Google Scholar 

  • Giorgi F, Bates GT (1989) The climatological skill of a regional model over complex terrain. Mon Weather Rev 117:2325–2347

    Article  Google Scholar 

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Global and Planterary Change 63(2–3):90–104

    Article  Google Scholar 

  • Gualdi S, Somot S, Li L, Artale V, Adani M, Bellucci A, Braun A, Calmanti S, Carillo A, Dell’Aquilla A, Déqué M, Dubois C, Elizalde A, Harzallah A, L’Hévéder B, May W, Oddo P, Ruti P, Sanna A, Sannino G, Sevault F, Scoccimarro E, Navarra A (2011) The CIRCE simulations: a new set of regional climate change projections performed with a realistic representation of the Mediterranean Sea, BAMS (in revision)

  • Habets F, Boone A, Champeaux JL, Etchevers P, Franchistéguy L, Leblois E, Ledoux E, Le Moigne P, Martin E, Morel S, Noilhan J, Quintana Segui P, Rousset-Regimbeau F, Viennot P (2008) The SAFRAN-ISBA-MODCOU hydrometeorological model applied over France. J Geophys Res 113:D06113. doi:10.1029/2007JD008548

    Article  Google Scholar 

  • Hagemann S, Dümenil L (1998) A parameterization of the lateral waterflow for the global scale. Clim Dyn 14(1):17–31

    Article  Google Scholar 

  • Hagemann S, Jacob D (2007) Gradient in the climate change signal of European discharge predicted by a multi-model ensemble. Clim Change (Prudence Special Issue) 81(Supplement 1):309–327

    Google Scholar 

  • Herrmann M, Somot S (2008) Relevance of ERA40 dynamical downscaling for modeling deep convection in the North-Western Mediterranean Sea. Geophys Res Let 35:L04607

    Article  Google Scholar 

  • Herrmann M, Bouffard J, Béranger K (2009) Monitoring open-ocean deep convection from space. Geophys Res Lett 36:L03606. doi:10.1029/2008GL036422

    Article  Google Scholar 

  • Herrmann M et al (2011) Representation of spatial and temporal variability of daily wind speed and of intense wind events over the Mediterranean Sea using dynamical downscaling: impact of the regional climate model configuration. Nat Hazards Earth Syst Sci 11:1983–2001. doi:10.5194/nhess-11-1983-2011

    Article  Google Scholar 

  • Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne J-L, Fairhead L, Filiberti M-A, Friedlingstein P, Grandpeix J-Y, Krinner G, LeVan P, Li et Z-XF (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Lott Clim Dyn 27:787–813

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press

  • Jacob D (2001) A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteorol Atmos Phys 77:61–73

    Article  Google Scholar 

  • Jacob D, Bärring L, Christensen OB, Christensen JH, de Castro M, Déqué M, Giorgi F, Hagemann S, Hirschi M, Jones R, Kjellström E, Lenderink G, Rockel B, Sànchez ES, Schär C, Seneviratne SI, Somot S, van Ulden A, van den Hurk B (2007) An inter-comparison of regional climate models for Europe: design of the experiments and model performance. Clim Change 81(suppl. 1):31–52. doi:10.1007/s10584-006-9213-4

    Article  Google Scholar 

  • Kothe S, Ahrens B (2010) On the radiation budget in regional climate simulations for West Africa. J Geophys Res 115:D23120. doi:10.1029/2010JD014331

    Article  Google Scholar 

  • Lascaratos A, Williams R, Tragou E (1993) A mixed layer study of the formation of levantine intermediate water. J Geophys Res 98(C8):14739–14749

    Article  Google Scholar 

  • Li ZX (1999) Ensemble atmospheric GCM simulation of climate interannual variability from 1979 to 1994. J Clim 12:986–1001

    Article  Google Scholar 

  • Li L, Bozec A, Somot S, Béranger K, Bouruet-Aubertot P, Sevault F, Crépon M (2006) Regional atmospheric, marine processes and climate modelling (chapter 7). In: Lionello P, Malanotte P, Boscolo R (eds) Mediterranean climate variability. Elsevier B.V., Amsterdam, pp 373–397

    Google Scholar 

  • Li L, Casado A, Dell’Aquila A, Dubois C, Elizalde A, L’Hévéder B, Lionello P, Sevault F, Somot S, Ruti P, Zampieri M (2011) Modelling of the Mediterranean climate system (chapter 7) In: Lionello P (ed) Mediterranean climate from past to future, Elsevier B.V., Amsterdam (in revision)

  • Lionello P, Malanotte-Rizzoli P, Alpert P, Artale V, Bocolo R, Garcia-Herrera R, Kull C, Li L, Luterbacher J, Oguz T, May W, Planton S, Rodo X, Theocharis A, Trigo R, Tsimplis M, Ulbrich U (2006) MEDCLIVAR: Mediterranean CLImate VARiability project. PAGES News/CLIVAR Exchanges 13:3–5

    Google Scholar 

  • Ludwig W, Dumont E, Meybeck M, Heussner S (2009) River discharges of water and nutrients to the Mediterranean Sea: major drivers for ecosystem changes during past and future decades? Prog Oceanogr 80:199–217

    Article  Google Scholar 

  • Madec G (2008) “NEMO ocean engine”. Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 27 ISSN No 1288-1619

  • Mariotti A (2010) Recent changes in Mediterranean water cycle: a pathway toward long-term regional hydroclimatic change? J Climate 23(6):1513–1525. doi:10.1175/2009JCLI3251.1

    Article  Google Scholar 

  • Mariotti A, Zeng N, Yoon J, Artale V, Navarra A, Alpert P, Li L (2008) Mediterranean water cycle changes: transition to drier 21st century conditions in observations and CMIP3 simulations. Env Res Lett. doi:10.1088/1748-9326/3/044001

  • McDonald AM, Candela J, Bryden HL (1994) In: La Violette (ed) An estimate of the net heat transport flux trough the strait of Gibraltar, seasonal and interannual variability of the Western Mediterranean Sea, Coastal Estuarine Stud., vol 46, AGU, Washington, DC, pp 12–32

  • MEDAR/MEDATLAS Group (2002) MEDAR/MEDATLAS 2002 Database. Cruise inventory, observed and analysed data of temperature and bio-chemical parameters, 4Cdrom

  • MEDOC Group (1970) Observation of formation of deep water in the Mediterranean Sea, 1969. Nature 227:1037–1040

    Article  Google Scholar 

  • Mikolajewicz U (2011) Modeling mediterranean ocean climate of the last glacial maximum. Clim Past 7(1):161–180

    Article  Google Scholar 

  • Millot C, Candela J, Fuda J-L, Tber Y (2006) Large warming and salinification of the Mediterranean outflow due to changes in its composition. Deep-Sea Res 53(4):656–666

    Article  Google Scholar 

  • Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grübler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H-H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) IPCC special report on emissions scenarios. Cambridge University Press, Cambridge, p 599

    Google Scholar 

  • Nixon SW (2003) Replacing the Nile: are anthropogenic nutrients providing the fertility once brought to the Mediterranean by a great river? Ambio 32(1):30–39

    Google Scholar 

  • Oddo P, Adani M, Pinardi N, Fratianni C, Tonani M, Pettenuzzo D (2009) A nested Atlantic-Mediterranean Sea general circulation model for operational forecasting. Ocean Sci Discuss 6:1093–1127

    Article  Google Scholar 

  • Oki YC, Sud (1998) Design of total runoff integrating pathways (TRIP)—a global river channel network. Earth Interact 2

  • Perry K (2001) Sea winds on QuikSCAT level 3 daily, gridded ocean wind vectors (JPL sea winds Project) guide document

  • Pettenuzzo D, Large WG, Pinardi N (2010) On the corrections of ERA-40 surface flux products consistent with the Mediterranean heat and water budgets and the connection between basin surface total heat flux and NAO. J Geophys Res 115:C06022. doi:10.1029/2009JC005631

    Article  Google Scholar 

  • Potter R, Lozier S (2004) On the warming and salinification of the Mediterranean Outflow waters in the North Atlantic. Geophys Res Lett 31:L01202. doi:10.1029/2003GL018161

    Article  Google Scholar 

  • Reid JL (1979) On the contribution of the Mediterranean Sea outflow to the Norweigian-Greenland Sea. Deep-Sea Res 26(1979):1199–1223

    Article  Google Scholar 

  • Rixen M et al (2005) The Western Mediterranean deep water: a proxy for climate change. Geophys Res Lett 32(L12608):1–4

    Google Scholar 

  • Robinson AR, Leslie WG, Theocharis A, Lascaratos A (2001) Mediterranean sea circulation In: Encyclopedia of ocean sciences. Academic Press, pp 1689–1706

  • Roether W, Manca BB, Klein B, Bregant D, Georgopoulos D, Beitzel V, Kovacevic V, Luchetta A (1996) Recent changes in Eastern Mediterranean deep waters. Science 271:333–335

    Article  Google Scholar 

  • Romanou A, Tselioudis G, Zerefos CS, Clayson C-A, Curry JA, Andersson A (2010) Evaporation-precipitation variability over the Mediterranean and the Black Seas from satellite and reanalysis estimates. J Clim 23:5268–5287. doi:10.1175/2010JCLI3525.1

    Article  Google Scholar 

  • Ruti PM, Somot S, Dubois C, Calmanti S, Ahrens B, Alias A, Aznar R, Bartholy J, Bastin S, Béranger K, Brauch J, Calvet J-C, Carillo A, Decharme B, Dell’Aquila A, Djurdjevic V, Drobinski P, Elizalde-Arellano A, Gaertner M, Galán P, Gallardo C, Giorgi F, Gualdi S, Harzallah A, Herrmann M, Jacob D, Khodayar S, Krichak S, Lebeaupin C, L’Heveder B, Li L, Liguro G, Lionello P, Onol B, Rajkovic B, Sannino G, Sevault F (in preparation) MED-CORDEX initiative for Mediterranean climate studies. EOS

  • Sanchez-Garrido JC, Sannino G, Liberti L, Garcia Lafuente J, Pratt LJ (2011) Numerical modelling of three-dimentiona stratified tidal flow over Camarinal Sill, strait of Gibraltar. J Geophys Res (in press). doi:10.1029/2011JC007093

  • Sanchez-Gomez E, Somot S, Mariotti A (2009) Future changes in the Mediterranean water budget projected by an ensemble of regional climate models. Geophys Res Lett 36:L21401. doi:10.1029/2009GL040120

    Article  Google Scholar 

  • Sanchez-Gomez E, Somot S, Josey SA, Dubois C, Elguindi N, Déqué M (2011) Evaluation of the Mediterranean Sea water and heat budgets as simulated by an ensemble of high resolution regional climate models. Clim Dyn 37:2067–2086. doi:10.1007/s00382-011-1012-6

    Article  Google Scholar 

  • Sannino G, Bargagli A, Artale V (2004) Numerical modeling of the semidiurnal tidal exchange through the strait of Gibraltar. J Geophys Res 109:C05011. doi:10.1029/2003JC002057

    Article  Google Scholar 

  • Sannino G, Carillo A, Artale V (2007) Three-layer view of transports and hydraulics in the strait of Gibraltar: a three-dimensional model study. J Geophys Res 112:C03010. doi:10.1029/2006JC003717

    Article  Google Scholar 

  • Sannino G, Pratt L, Carillo A (2009a) Hydraulic criticality of the exchange flow through the strait of Gibraltar. J Phys Oceanogr 39(11):2779–2799

    Article  Google Scholar 

  • Sannino G, Herrmann M, Carillo A, Rupolo V, Ruggiero V, Artale V, Heimbach P (2009b) An eddy-permitting model of the Mediterranean Sea with a two-way grid refinement at Gibraltar. Ocean Model 30(1):56–72. doi:10.1016/j.ocemod.2009.06.002

    Article  Google Scholar 

  • Schott F, Visbeck M, Send U, Fischer J, Stramma L, Desaubies Y (1996) Observations of deep convection in the Gulf of Lions, Northern Mediterranean, during the Winter of 1991/92. J Phys Oceanogr 26:505–524

    Google Scholar 

  • Scoccimarro E, Gualdi S, Bellucci A, Sanna A, Fogli PG, Manzini E, Vichi M, Oddo P, Navarra A (2011) Effects of tropical cyclones on ocean heat transport in a high-resolution coupled general circulation model. J Climate 24:4368–4384. doi:10.1175/2011JCLI4104.1

    Article  Google Scholar 

  • Sevault F, Somot S, Beuvier J (2009) A regional version of the NEMO ocean engine on the Mediterranean Sea: NEMOMED8 user’s guide. Note de centre n°107 du CNRM, Groupe de Météorologie de Grande Echelle et Climat

  • Skliris N, Lascaratos A (2004) Impacts of the Nile River damming on the thermohaline circulation and water mass characteristics of the Mediterranean Sea. J Mar Sys 52(1–4):121–143

    Article  Google Scholar 

  • Skliris N, Sofianos S, Lascaratos A (2007) Hydrological changes in the Mediterranean Sea in relation to changes in the freshwater budget: a numerical modelling study. J Mar Syst 65:400–416

    Article  Google Scholar 

  • Somot S, Sevault F, Déqué M (2006) Transient climate change scenario simulation of the Mediterranean Sea for the 21st century using a high-resolution ocean circulation model. Clim Dyn 27(7–8):851–879. doi:10.1007/s00382-006-0167-z

    Article  Google Scholar 

  • Somot S, Sevault F, Déqué M, Crépon M (2008) 21st century climate change scenario for the Mediterranean using a coupled atmosphere-ocean regional climate model. Global Planetary Change 63(2–3):112–126. doi:10.1016/j.gloplacha.2007.10.003

    Article  Google Scholar 

  • Sotillo MG, Ratsimandresy AW, Carretero JC, Bentamy A, Valero F, Gonzalez-Rouco F (2005) A high-resolution 44-year atmospheric hindcast for the Mediterranean Basin: contribution to the regional improvement of global reanalysis. Clim Dyn. doi:10.1007/s00382-005-0030-7

  • Soto-Navarro J, Criado-Aldeanueva F, García-Lafuente J, Sánchez-Román A (2010) Estimation of the Atlantic inflow through the strait of Gibraltar from climatological and in situ data. J Geophys Res 115:C10023. doi:10.1029/2010JC006302

    Article  Google Scholar 

  • Stanev E, Peneva EL (2002) Regional sea level response to global climatic change: Black Sea examples. Global Planet Change 32:33–47

    Article  Google Scholar 

  • Stanev EV, Le Traon P-Y, Peneva EL (2000) Sea level variations and their dependency on meteorological and hydrological forcing: analysis of altimeter and surface data for the Black sea. J Geophys Res 105(C7):17203–17216

    Article  Google Scholar 

  • Struglia MV, Mariotti A, Filograsso A (2004) River discharge into the Mediterranean Sea: climatology and aspect of the observed variability. J Clim 17:4740–4751

    Article  Google Scholar 

  • Tsimplis MN, Bryden HL (2000) Estimation of the transport through the strait of Gibraltar. Deep Sea Res I 47:2219–2242

    Article  Google Scholar 

  • Tsimplis M, Zervakis V, Josey S, Peneva EL, Struglia MV, Stanev E, Teocharis A, Lionello P, Malanotte-Rizzoli P, Artale V, Tragou E, Oguz T (2005) Changes in the oceanography of the Mediterranean Sea and their link to climate variability. In: Lonello P, Malanotte-Rizzoli P, Boscolo R (eds) Elsevier, pp 226–281

  • Valcke S (2006) OASIS3 user guide (oasis3_prism_2-5). PRISM support initiative report no 3. CERFACS, Toulouse, p 64

    Google Scholar 

  • Van Leer B (1979) Towards the ultimate conservative difference scheme, V. A Second Order Sequel to Godunov’s Method. J Com Phys 32:101–136

    Article  Google Scholar 

  • Vörösmarty C, Fekete B, Tucker B (1996) Global river discharge. RivDis, UNESCO, International Hydrological Programm Global Hydrological Archive and Analysis Systems, Paris

    Google Scholar 

  • Wüst G (1961) On the vertical circulation of the Mediterranean Sea. J Geophys Res v.66(10):3261–3271

    Article  Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteor Soc 78:2539–2558

    Article  Google Scholar 

  • Xoplaki E, Luterbacher J, González-Rouco JF (2006) Mediterranean summer temperature and winter precipitation, large scale dynamics, trends. Il Nuovo Cimento 29:45–54

    Google Scholar 

  • Yu L, Jin X, Weller RA (2008) Multidecade global flux datasets from the objectively analyzed air-sea fluxes (OAFlux) project: latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution, OAFlux Project Technical Report. OA-2008-01. Woods Hole, Massachusetts, [PDF]

  • Zerefos CS, Eleftheratos K, Meleti C, Kazadzis S, Romanou A, Ichoku C, Tselioudis G, Bais A (2009) Solar dimming and brightening over Thessaloniki, Greece, and Beijing, China. Tellus 61B:657–665. doi:10.1111/j.1600-0889.2009.00425

    Google Scholar 

  • Zervakis V, Georgopoulos D, Karageorgis A, Theocharis A (2004) On the response of the Aegean Sea to climatic variability: a review. Int J Climatol 24:1845–1858

    Article  Google Scholar 

  • Zou Liwei, Zhou Tianjun, Laurent Li, Zhang Jie (2010) East china summer rainfall variability of 1958–2000: dynamical downscaling with a variable-resolution agcm. J Clim 23:6394–6408. doi:10.1175/2010JCLI3689.1

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank to CIRCE partners from making the data and some diagnostics available for this study. The financial support of this work has been provided by the European Project CIRCE: Integrated Project Climate Change and Impact Research: the Mediterranean Environment, under contract No. 036961. This work is also part of the HyMeX program. We would like to thank W. Ludwig and E. Stanev for providing us with river runoff and Black Sea dataset respectively. We also thank J.-L. Dufresne and G. Jordà for useful discussions about the Gibraltar and surface heat balance. We are grateful to Marc Lucas for a careful reading of the manuscript. The authors thank also the two anonymous reviewers for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Dubois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubois, C., Somot, S., Calmanti, S. et al. Future projections of the surface heat and water budgets of the Mediterranean Sea in an ensemble of coupled atmosphere–ocean regional climate models. Clim Dyn 39, 1859–1884 (2012). https://doi.org/10.1007/s00382-011-1261-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-011-1261-4

Keywords

Navigation