Skip to main content

Advertisement

Log in

AMOC variations in 1979–2008 simulated by NCEP operational ocean data assimilation system

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Variations in the Atlantic meridional overturning circulation (AMOC) between 1979 and 2008 are documented using the operational ocean analysis, the Global Ocean Data Assimilation System (GODAS), at the National Centers for Climate Prediction (NCEP). The maximum AMOC at 40°N is about 16 Sv in average with peak-to-peak variability of 3–4 Sv. The AMOC variations are dominated by an upward trend from 1980 to 1995, and a downward trend from 1995 to 2008. The maximum AMOC at 26.5°N is slightly weaker than hydrographic estimates and observations from mooring array. The dominant variability of the AMOC in 20°–65°N (the first EOF, 51% variance) is highly correlated with that in the subsurface temperature (the first EOF, 33% variance), and therefore, with density (the first EOF, 25% variance) in the North Atlantic, and is consistent with the observational estimates based on the World Ocean Database 2005. The dominant variabilities of AMOC and subsurface temperature are also analyzed in the context of possible links with the net surface heat flux, deep convection, western boundary current, and subpolar gyre. Variation in the net surface heat flux is further linked to the North Atlantic Oscillation (NAO) index which is found to lead AMOC variations by about 5 years. Our results indicate that AMOC variations can be documented based on an ocean analysis system such as GODAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Balmaseda MA et al (2007) Historical reconstruction of the Atlantic meridional overturning circulation from the ECMWF operational ocean reanalysis. Geophys Res Lett 34:L23515. doi:10.1029/2007GL031645

    Google Scholar 

  • Behringer DW (2007) The global ocean data assimilation system (GODAS) at NCEP. Preprints, 11th symp. on integrated observing and assimilation systems for atmosphere, oceans, and land surface, San Antonio, TX, Amer. Meteor. Soc., 3.3. Available online at http://ams.confex.com/ams/87ANNUAL/techprogram/paper_119541.htm

  • Behringer DW, Ji M, Leetma A (1998) An improved coupled model for ENSO prediction and implication for ocean initialization. Part I: the ocean data assimilation system. Mon Wea Rev 126:1013–1021

    Google Scholar 

  • Behringer DW, Xue Y (2004) Evaluation of the global ocean data assimilation system at NCEP: the Pacific ocean. Eighth symposium on integrated observing and assimilation system for atmosphere, ocean, and land surface, AMS 84th annual meeting, Washington State Convention and Trade Center, Seattle, Washington, pp 11–15

  • Bentsen M et al (2004) Simulated variability of the Atlantic meridional overturning circulation. Clim Dyn 22:701–720

    Article  Google Scholar 

  • Bingham RJ et al (2007) Meridional coherence of the North Atlantic meridional overturning circulation. Geophys Res Lett 34:L23606. doi:10.1029/2007GL031731

    Article  Google Scholar 

  • Böning CW et al (2006) Decadal variability of subpolar gyre transport and its reverberation in the North Atlantic overturning. Geophys Res Lett 33:L21S01. doi:10.1029/2006GL026906

  • Boyer TP et al (2006) World Ocean database 2005. In: Levitus S (ed) NOAA atlas NESDIS, vol 60. U.S. Government Print Office, Washington, DC, 190 pp

  • Bryden HL et al (2005) Slowing of the Atlantic meridional overturning circulation at 25 N. Nature 438. doi:10.1038/nature04385

  • Bugnion V et al (2006) An adjoint analysis of the meridional overturning circulation in an ocean model. J Clim 19:3732–3750

    Article  Google Scholar 

  • Cunningham SA, Kanzow T, Rayner D, Baringer MO, Johns WE, Marotzke J, Longworth HR, Grant EM, Hirschi JJ-M, Beal LM, Meinen CS, Bryden HL (2007) Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science 317:935–938. doi:10.1126/science.1141304

    Google Scholar 

  • Danabasoglu G (2008) On multidecadal variability of the Atlantic meridional overturning circulation in the community climate system model version 3. J Clim 21:5524–5544

    Article  Google Scholar 

  • Delworth TL, Mann ME (2000) Observed and simulated multi-decadal variability in the Northern Hemisphere. Clim Dyn 16:661–676

    Article  Google Scholar 

  • Eden C, Willebrand J (2001) Mechanism of interannual to decadal variability of the North Atlantic circulation. J Clim 14:2266–2280

    Article  Google Scholar 

  • Frankignoul C, Deshayes J, Curry R (2009) The role of salinity in the decadal variability of the North Atlantic meridional overturning circulation. Clim Dyn. doi:10.1007/s00382-008-0523-2

  • Gill AE (1982) Atmosphere-ocean dynamics. Academic Press, Cambridge

    Google Scholar 

  • Grist JP, Marsh R, Josey SA (2009) On the relationship between the North Atlantic meridional overturning circulation and the surface-forced overturning stream function. J Clim 22:4989–5002

    Article  Google Scholar 

  • Häkkinen S, Rhines PB (2004) During the 1990s decline of subpolar North Atlantic circulation. Science 304. doi:10.1126/science.1094917

  • Held IM et al (2005) Simulation of Sahel drought in the 20th and 21st centuries. PNAS 102:17891–17896. doi:10.1073/pnas.0509057102

    Article  Google Scholar 

  • Huang B, Stone PH, Hill C (2003) Sensitivities of deep-ocean heat content to surface fluxes and subgrid-scale parameters in an ocean general circulation model. J Geophys Res 108. doi:10.1029/2001JC001044

  • Huang B, Xue Y, Behringer DW (2008) Impacts of Argo salinity in NCEP global ocean data assimilation system: the tropical Indian ocean. J Geophys Res 113:C08002. doi:10.1029/2007JC004388

    Article  Google Scholar 

  • Josey SA, Grist JP, Marsh R (2009) Estimates of meridional overturning circulation variability in the North Atlantic from surface density flux fields. J Geophys Res 114:C09022. doi:10.1029/2008JC005230

    Article  Google Scholar 

  • Jungclaus JH, Haak H, Latif M, Mikolajewicz U (2005) Arctic North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J Clim 18:4013–4031

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77:437–470

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woolen J, Yang S-K, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Am Meteor Soc 83:1631–1643

    Article  Google Scholar 

  • Kanzow T et al (2010) Seasonal variability of the Atlantic meridional overturning circulation at 26.5°N. J Clim 23:5678–5698

    Google Scholar 

  • Keenlyside NS et al (2008) Advancing decadal-scale climate prediction in the North Atlantic sector. Nature 453:84–88. doi:10.1038/nature06921

    Article  Google Scholar 

  • Kerr RA (2000) A North Atlantic climate pacemaker for the centuries. Science 288:1984–1985

    Article  Google Scholar 

  • Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708. doi:10.1029/2005GL024233

    Article  Google Scholar 

  • Köhl A, Stammer D (2007) Variability of the meridional overturning in the North Atlantic from the 50 years GECCO state estimation. Rep. 43, Institut fur Meereskunde, University of Hamburg, 38 pp

  • Kuhlbrodt K et al (2007) On the driving processes of the Atlantic meridional overturning circulation. Rev Geophys 45: RG2001. doi:10.1029/2004RG000166

  • Meehl GA et al (2009) Decadal prediction. Bull Am Metrol Soc 90:1467–1485

    Article  Google Scholar 

  • Msadek R, Frankignoul C (2009) Atlantic multidecadal oceanic variability and its influence on the atmosphere in a climate model. Clim Dyn 33:45–62. doi:10.1007/s00382-008-0452-0

    Article  Google Scholar 

  • Pohlmann H, Jungclaus JH, Köhl A, Stammer D, Marotzke J (2009) Initializing decadal climate predictions with the GECCO oceanic synthesis: effects on the North Atlantic. J Clim 22:3926–3938

    Article  Google Scholar 

  • Rahmstorf S (1996) On the freshwater forcing and transport of the Atlantic thermohaline circulation. Clim Dyn 12:799–811

    Article  Google Scholar 

  • Smith DM et al (2007) Improved surface temperature prediction for the coming decade from a global climate model. Science 317. doi:10.1126/science.1139540

  • Stommel H (1961) Thermohaline convection with two stable regimes of flow. Tellus 13B:224–230

    Article  Google Scholar 

  • Vellinga M (1996) Instability of two-dimensional thermohaline circulation. J Phys Oceanogr 26:305–319

    Article  Google Scholar 

  • Wang C et al (2009) Seawater density variations in the North Atlantic and the Atlantic meridional overturning circulation. Clim Dyn 33. doi:10.1007/s00382-009-0560-5

  • Wunsch C (2005) Thermohaline loops, Stommel box models, and the Sandstrom theorem. Tellus 57A:84–99

    Google Scholar 

  • Wunsch C, Heimbach P (2006) Estimated decadal changes in the North Atlantic meridional overturning circulation and heat flux 1993–2004. J Phys Oceanogr 36:2012–2024

    Article  Google Scholar 

  • Zhang R (2008) Coherent surface subsurface fingerprint of the Atlantic meridional overturning circulation. Geophys Res Lett 35:L20705. doi:10.1029/2008GL035463

    Article  Google Scholar 

  • Zhang S, Rosati A, Harrison MJ (2009) Detection of multidecadal oceanic variability by ocean data assimilation in the context of a “perfect” coupled model. J Geophys Res 114: C12018. doi:10.1029/2008JC005261

Download references

Acknowledgments

Authors thank Tim Boyer of National Oceanographic Data Center for providing us objectively analyzed salinity and temperature data of the World Ocean Database 2005. Comments from two anonymous reviewers have greatly improved our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boyin Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, B., Xue, Y., Kumar, A. et al. AMOC variations in 1979–2008 simulated by NCEP operational ocean data assimilation system. Clim Dyn 38, 513–525 (2012). https://doi.org/10.1007/s00382-011-1035-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-011-1035-z

Keywords

Navigation