Skip to main content

Advertisement

Log in

Natural forcing of climate during the last millennium: fingerprint of solar variability

Low frequency solar forcing and NAO

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The variability of the climate during the last millennium is partly forced by changes in total solar irradiance (TSI). Nevertheless, the amplitude of these TSI changes is very small so that recent reconstruction data suggest that low frequency variations in the North Atlantic Oscillation (NAO) and in the thermohaline circulation may have amplified, in the North Atlantic sector and mostly in winter, the radiative changes due to TSI variations. In this study we use a state-of-the-art climate model to simulate the last millennium. We find that modelled variations of surface temperature in the Northern Hemisphere are coherent with existing reconstructions. Moreover, in the model, the low frequency variability of this mean hemispheric temperature is found to be correlated at 0.74 with the solar forcing for the period 1001–1860. Then, we focus on the regional climatic fingerprint of solar forcing in winter and find a significant relationship between the low frequency TSI forcing and the NAO with a time lag of more than 40 years for the response of the NAO. Such a lag is larger than the around 20-year lag suggested in other studies. We argue that this lag is due, in the model, to a northward shift of the tropical atmospheric convection in the Pacific Ocean, which is maximum more than four decades after the solar forcing increase. This shift then forces a positive NAO through an atmospheric wave connection related to the jet-stream wave guide. The shift of the tropical convection is due to the persistence of anomalous warm SST forcing the anomalous precipitation, associated with the advection of warm SST by the North Pacific subtropical gyre in a few decades. Finally, we analyse the response of the Atlantic meridional overturning circulation to solar forcing and find that the former is weakened when the latter increases. Changes in wind stress, notably due to the NAO, modify the barotropic streamfunction in the Atlantic 50 years after solar variations. This implies a wind-driven modification of the oceanic circulation in the Atlantic sector in response to changes in solar forcing, in addition to the variations of the thermohaline circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ammann CM, Joos F, Schimel DS, Otto-Bliesner BL, Tomas RA (2007) Solar influence on climate during the past millennium: results from transient simulations with the NCAR Climate System Model. Proc Natl Acad Sci 104:3713–3718

    Article  Google Scholar 

  • Bard E, Raisbeck G, Yiou F, Jouzel J (2000) Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus B 52:985–992

    Article  Google Scholar 

  • Bentsen M, Drange H, Furevik T, Zhou T (2004) Simulated variability of the Atlantic meridional overturning circulation. Clim Dyn 22:701–720

    Article  Google Scholar 

  • Berger A (1978) Long-term variation of caloric solar radiation resulting monthly and latitudinally varying volcanic forcing dataset in simulations from the earthGs orbital elements. Quat Res 9:139G167

    Article  Google Scholar 

  • Bertrand C, Loutre M, Crucifix M, Berger A (2002) Climate of the last millennium: a sensitivity study. Tellus 54A:221–244

    Article  Google Scholar 

  • Blanke B, Arhan M, Speich S, Pailler K (2002) Diagnosing and picturing the north atlantic segment of the global conveyor belt by means of an ocean general circulation model. J Phys Oceanogr 32:1430–1451

    Article  Google Scholar 

  • Blanke B, Delecluse P (1993) Variability of the tropical Atlantic ocean simulated by a general circulation model with two different mixed layer physics. J Phys Oceanogr 23:1363–1388

    Article  Google Scholar 

  • Bradley RS, Jones PD (1993) “Little Ice Age” summer temperature variations: their nature and relevance to recent global warming trends. Holocene 3:367–376

    Article  Google Scholar 

  • Branstator G (2002) Circumglobal teleconnections, the jetstream waveguide, and the North Atlantic Oscillation. J Clim 15:1983–1910

    Article  Google Scholar 

  • Brohan P, Kennedy JJ, Harris I, Tett S, Jones P (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111:D12106

    Article  Google Scholar 

  • Cassou C, Terray L (2001) Dual influence of Atlantic and Pacific SST anomalies on the North Atlantic/Europe Winter Climate. Geophys Res Lett 28:3195–3198

    Article  Google Scholar 

  • Chapelon N, Douville H, Kosuth P, Oki T (2002) Off-line simulation of the Amazon water balance: a sensitivity study with implications for GSWP. Clim Dyn 19:141–154

    Article  Google Scholar 

  • Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289:270–277

    Article  Google Scholar 

  • Cubasch U, Voss R, Hegerl GC, Waszkewitz J, Crowley TJ (1997) Simulation of the influence of solar radiation variations on the global climate with an ocean–atmosphere general circulation model. Clim Dyn 33:757–767

    Article  Google Scholar 

  • Curry RG, McCartney MS, Joyce TM (1998) Oceanic transport of subpolar climate signals to mid-depth subtropical waters. Nature 391:575–577

    Article  Google Scholar 

  • Denton GH, Broecker WS (2009) Wobbly ocean conveyor circulation during the Holocene? Quat Sci Rev 27:1939–1950

    Article  Google Scholar 

  • Déqué M et al (1999) ARPEGE version 3, documentation algorithmique et mode dGemploi. Tech. rep., available from CNRM/GMGEC, Météo-France, 42 avenue G. Coriolis, 31057 Toulouse, France (in French)

  • Deser C, Phillips A (2009) Atmospheric circulation trends, 1950–2000: the relative roles of sea surface temperature forcing and direct atmospheric radiative forcing. J Clim 22:396–413

    Article  Google Scholar 

  • Deser C, Phillips AS, Hurrell JW (2004) Pacific interdecadal climate variability: linkages between the Tropics and North Pacific during boreal winter since 1900. J Clim 17:3109–3124

    Google Scholar 

  • Dickson RR, Lazier JJ, Meincke J, Rhines P, Swift J, (1996) Longterm coordinated changes in the convective activity of the North Atlantic. Prog Oceanogr 38:241–295

    Article  Google Scholar 

  • Douville H, Royer J-F, Mahfouf J-F (1995) A new snow parametrization for the Météo-France climate model. Part I: validation in stand-alone experiments. J Clim 12:21–35

    Google Scholar 

  • Duchon CE (1979) Lanczos filtering in one and two dimensions. J Appl Meteorol 18:1016–1022

    Article  Google Scholar 

  • Ebisuzaki W (1997) A method to estimate the statistical significance of a correlation when the data are serially correlated. J Clim 10:2147–2153

    Article  Google Scholar 

  • Eddy J (1976) The Maunder minimum. Science 192:1189–G1202

    Article  Google Scholar 

  • Eden C, Willebrand J (2001) Mechanism of interannual to decadal variability of the north atlantic circulation. J Clim 14:2266–2280

    Article  Google Scholar 

  • Forster P et al (2007) Changes in Atmospheric Constituents and in Radiative Forcing. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 129–234

  • Foukal P, North G, Wigley T (2004) A stellar view on solar variations and climate. Science 306:68G69

    Article  Google Scholar 

  • Frankignoul C, de Coetlogon G, Joyce T, Dong S (2001) Gulf Stream variability and ocean–atmosphere interactions. J Phys Oceanogr 31:3516–3529

    Article  Google Scholar 

  • Gent PR, Mc Williams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20:150–155

    Article  Google Scholar 

  • Gibelin AL, Déqué M (2003) Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution model. Clim Dyn 20:327G–339

    Google Scholar 

  • Goosse H, Lefebvre W, de Montety A, Crespin E, Orsi A (2009) Consistent past half-century trends in the atmosphere, the sea ice and the ocean at high southern latitudes. Clim Dyn. doi:doi10.1007/s00382-008-0500-9

  • Gregory J et al (2005) A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys Res Let 32

  • Grieser J, Schönwiese CD (1999) Parameterization of spatio-temporal patterns of volcanic aerosol induced stratospheric optical depth and its climate radiative forcing. Atmosfera 12:111–133

    Google Scholar 

  • Guemas V, Salas-Mélia D (2008a) Simulation of the Atlantic meridional overturning circulation in an atmosphere–ocean global coupled model. Part I : a mechanism governing the variability of ocean convection in a preindustrial experiment. Clim Dyn 31:29–48

    Article  Google Scholar 

  • Guemas V, Salas-Mélia D (2008b) Simulation of the Atlantic meridional overturning circulation in an atmosphere–ocean global coupled model. Part II : a weakening in a climate change experiment—a feedback mechanism. Clim Dyn 30:831–844

    Article  Google Scholar 

  • Guiot J, Corona C, ESCARSEL members (2010) Growing season temperature in europe and climate forcings for the last 1400 years. PLoS ONE (submitted)

  • Hamon M (2007) La circulation de l’océan global décrite par une trajectoire lagrangienne. M.S. thesis, Université de Bretagne Occidentale (in French)

  • Hegerl G et al (2007) Understanding and attributing climate change. In: Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate change. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp 663–746

  • Hu AX, Meehl GA, Washington WM, Dai AG (2004) Response of the Atlantic thermohaline circulation to increased atmospheric CO2 in a coupled model. J Clim 17:4267–4279

    Article  Google Scholar 

  • Hunke EC, Dukowicz JK (1997) An elasticGviscousGplastic model for sea ice dynamics. J Phys Oceanogr 27:1849G–1867

    Article  Google Scholar 

  • Hunke EC, Lipscomb WH (2002) CICE: the Los Alamos sea ice model, documentation and software UserGs Manual. T-3 Fluid Dynamics Group. Tech rep lacc-98G16 v.3, Los Alamos National Laboratory

  • Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679

    Article  Google Scholar 

  • Hurrell JW, Hoerling MP, S PA, Caron J, Yin J (2004) Twentieth century North Atlantic climate change. Part I: assessing determinism. J Atmos Sci 60:1504–1521

    Google Scholar 

  • Huybers P, Curry W (2006) Links between annual, milankovitch and continuum temperature variability. Nature 441:329–332

    Article  Google Scholar 

  • Jansen E et al (2007) Palaeoclimate. In: Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate change. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp 433–498

  • Jones P, Osborn T, Briffa K (2001) The evolution of climate over the last millennium. Science 292:662–G667

    Article  Google Scholar 

  • Keenlyside NS, Latif M, Jungclaus J, Kornblueh L, Roeckner E (2008) Advancing decadal-scale climate prediction in the North Atlantic sector. Nature 453:84–88. doi:10.1038/nature06921

    Article  Google Scholar 

  • Lamb H (1965) The early medieval warm epoch and its sequel. Palaeogeogr Palaeoclimatol Palaeoecol 1:13–37

    Article  Google Scholar 

  • Lean J, Beer J, Bradley R (1995) Reconstruction of solar irradiance since 1610: implications for climate change. Geophys Res Lett 22:3195–G3198

    Article  Google Scholar 

  • Lean J, Wang Y, Sheeley N (2002) The effect of increasing solar activity on the sunGs total and open magnetic flux during multiple cycles: Implications for solar forcing of climate. Geophys Res Lett. doi:10.1029/2002GL015880

  • Levitus S (1982) Climatological atlas of the world ocean. Professional paper, NOAA/GFDL

  • Lund DC, Lynch-Stieglitz J, Curry WB (2006) Gulf Stream density structure and transport during the past millennium. Nature 444:601–604

    Article  Google Scholar 

  • Luterbacher J, Xoplaki E, Rickli R, Gyalistras D, Schmutz C, Wanner H (2002b) Reconstruction of sea level pressure fields over the Eastern North Atlantic and Europe back to 1500. Clim Dyn 18:545–561

    Google Scholar 

  • Luterbacher J et al (2002a) Extending north atlantic oscillation reconstructions back to 1500. Atmos Sci Lett. doi:10.1006/asle.2001.0044

  • Madec G, Chartier M, Delecluse P, Crépon M (1991) A three-dimensional numerical study of deep water formation in the Northwestern Mediterranean Sea. J Phys Oceanogr 21:1349G–1371

    Article  Google Scholar 

  • Madec G, Delecluse P, Imbard M, L+vy C (1998) OPA version 8. Ocean general circulation model reference manual. Rapp. Int., LODYC, France, p 200

    Google Scholar 

  • Mahfouf JF, Manzi A, Noilhan J, Giordani H, Déqué M (1995) The land surface scheme ISBA within the Météo-France climate model ARPEGE. Part I. Implementation and preliminary results. J Clim 8:2039–2057

    Article  Google Scholar 

  • Mann M, Bradley R, Hughes M (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–787

    Article  Google Scholar 

  • Mann ME, Zhang ZH, Hughes MK, Bradley RS, Miller SK, Rutherford S, Fenbiao N (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Natl Acad Sci 105:13252–13257

    Google Scholar 

  • Masson V, Champeaux J-L, Chauvin F, Meriguet C, Lacaze R (2003) A global database of land surface parameters at 1-km resolution in meteorological and climate models. J Clim 16:1261–1282

    Article  Google Scholar 

  • Meehl G, Arblaster J, Branstator G, van Loon H (2008) A coupled air–sea response mechanism to solar forcing in the Pacific region. J Clim 21:2883–2897

    Article  Google Scholar 

  • Moberg A, Sonechkin DM, Holmgren K, Datsenko NM, Karlen W (2005) Highly variable northern hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433:613–617

    Article  Google Scholar 

  • Muscheler R, Joos F, Beer J, Muller SA, Vonmoosc M, Snowballd I (2007) Solar activity during the last 1000 yr inferred from radionuclide records. Quat Sci Rev 26:82–97

    Article  Google Scholar 

  • Oki T, Sud YC (1998) Design of total runoff integrating pathways (TRIP). A global river channel network. Earth Interact 2:1–37

    Article  Google Scholar 

  • Ottera OH (2008) Simulating the effects of the 1991 Mount Pinatubo volcanic eruption using the ARPEGE atmosphere general circulation model. Adv Atmos Sci 25:213–226

    Article  Google Scholar 

  • Paillard D (2008) From atmosphere, to climate, to Earth system science. Interdiscip Sci Rev 33:25–35

    Article  Google Scholar 

  • Paulson CA, Simpson JJ (1977) Irradiance measurements in the upper ocean. J Phys Oceanogr 7:952G–956

    Article  Google Scholar 

  • Ramankutty N, Foley J (1999) Estimating historical changes in global land cover: croplands from 1700 to 1992. Global Biogeochem Cycles 13:997–1027

    Article  Google Scholar 

  • Salas-Mélia D (2002) A global coupled sea ice-ocean model. Ocean Model 4:137–172

    Article  Google Scholar 

  • Salas-Mélia D et al (2005) Description and validation of the CNRM-CM3 global coupled model. Tech rep, CNRM technical report 103. URL http://www.cnrm.meteo.fr/scenario2004/paper_cm3.pdf, available from CNRM/GMGEC, 42 ave. G.Coriolis, 31057 Toulouse, France

  • Schneider B, Latif M, Schmittner A (2007) Evaluation of different methods to assess model projections of the future evolution of the atlantic meridional overturning circulation. J Clim 20:2121–2132

    Article  Google Scholar 

  • Schneider EK, Bengtsson L, Hu Z (2003) Forcing of northern hemisphere climate trends. J Atmos Sci 60:1504–1521

    Article  Google Scholar 

  • Shindell D, Schmidt G, Miller R, Mann M (2003) Volcanic and solar forcing of climate change during the preindustrial era. J Clim 16:4094–4107

    Article  Google Scholar 

  • Shindell DT, Schmidt GA, Mann ME, Rind D, Waple A (2001) Solar forcing of regional climate change during the Maunder minimum. Science 294:2149–2152

    Article  Google Scholar 

  • Sicre MA et al (2008) Decadal variability of sea surface temperatures off North Iceland over the last 2000 yrs. Earth Planet Sci Lett. doi:10.1016/j.epsl.2008.1001.101

  • Speer K, Rintoul SR, Sloyan B (2000) The diabatic Deacon cell. J Phys Oceanogr 12:3212–3222

    Article  Google Scholar 

  • Stendel M, Mogensen IA, Christensen JH (2006) Influence of various forcings on global climate in historical times using a coupled atmosphere–ocean general circulation model. Clim Dyn 26:1–15

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (1998) The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300

    Article  Google Scholar 

  • Thorndike AS, Rothrock DA, Maykut GA, R C (1975) The thickness distribution of sea ice. J Geophys Res 80:4501–4513

    Article  Google Scholar 

  • Trenberth K et al (2007) Observations: surface and atmospheric climate change. In: Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate change. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp 235–336

  • Valcke S, Declat D, Redler R, Ritzdorf H, Schoenemeyer T, Vogelsang R (2004) In: Proceedings of the 6th International Meeting, High performance computing for computational science, Vol. 1. Universidad Politecnica de Valencia, Valencia, Spain., the PRISM Coupling and I/O System. VECPAR’04

  • Walin G (1982) On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus 34:187–195

    Article  Google Scholar 

  • Waple AM, Mann ME, Bradley RS (2002) Long-term patterns of solar irradiance forcing in model experiments and proxy based surface temperature reconstructions. Clim Dyn 18:563–578

    Google Scholar 

  • Wood RA, Keen AB, Mitchell JFB, Gregory JM (1999) Changing spatial structure of the thermohaline circulation in response to atmospheric CO2 forcing in a climate model. Nature 399:572–575

    Article  Google Scholar 

  • Zorita E, von Storch H, Gonzalez-Rouco FJ, Cubasch U, Luterbacher JU, Legutke S, Fischer-Bruns I, Schlese U (2004) Climate evolution in the last five centuries simulated by an atmosphere–ocean model: global temperatures, the North Atlantic Oscillation and the Late Maunder minimum. Meteorologische Zeitschrift 13:271–289

    Article  Google Scholar 

Download references

Acknowledgments

We thank Hugues Goosse, Joel Guiot and Christoph Raible for very constructive discussion about the results presented here. We thank Tim Osborn for his help concerning the overlap reconstructed temperature. This paper is a contribution to the project ESCARSEL funded by the French Agency for National Research (ANR VMC 2006). The use of statpack, safo and ferret softwares is acknowledged. The help of Patrick Brockmann and Eric Maisonnave has improved the quality of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Swingedouw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swingedouw, D., Terray, L., Cassou, C. et al. Natural forcing of climate during the last millennium: fingerprint of solar variability. Clim Dyn 36, 1349–1364 (2011). https://doi.org/10.1007/s00382-010-0803-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-010-0803-5

Keywords

Navigation