Skip to main content
Log in

Effects of the low-frequency zonal wind variation on the high frequency atmospheric variability over the tropics

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Recently, there is increasing evidence on the interaction of atmospheric high-frequency (HF) variability with climatic low-frequency (LF) variability. In this study, we examine this relationship of HF variability with large scale circulation using idealized experiments with an aqua-planet Atmospheric GCM (with zonally uniform SST), run in different zonal momentum forcing scenarios. The effect of large scale circulation changes to the HF variability is demonstrated here. The HF atmospheric variability is enhanced over the westerly forced region, through easterly vertical shear. Our study also manifests that apart from the vertical wind shear, strong low-level convergence and horizontal zonal wind shear are also important for enhancing the HF variance. This is clearly seen in the eastern part of the forcing, where the HF activity shows relatively maximum increase, in spite of similar vertical shear over the forced regions. The possible implications for multi-scale interaction (e.g. MJO–ENSO interaction) are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bonan GB (1996) A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: technical description and user’s guide. NCAR tech. note NCAR/TN-417+STR, Natl. Cent. for Atmos. Res., Boulder, Colorado, 150 pp

  • Cohen J, Cohen P (1983) Applied multi regression/correlation analysis for the behavioral sciences. Lawrence Erlbam Associate, Hillsdale, 545 pp

  • Curtis S, Adler RF, Huffman GJ, Gu G (2004) Westerly wind events and precipitation in the eastern Indian Ocean as predictors for El Nino: climatology and case study for the 2002–2003 El Nino. J Geophys Res 109:D20104. doi:10.1029/2004JD004663

    Article  Google Scholar 

  • Duchon C (1979) Lancos filtering in one and two dimensions. J Appl Meteorol 1016–1022. doi:10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2

  • Eisenman I, Yu L, Tziperman E (2005) Westerly wind bursts: ENSO’s tail rather than the dog? J Clim 18:5224–5238. doi:10.1175/JCLI3588.1

    Article  Google Scholar 

  • Gebbie G, Eisenman I, Wittenberg A, Tziperman E (2007) Modulation of westerly wind bursts by sea surface temperature: a semi-stochastic feedback for ENSO. J Atmos Sci (in press)

  • Gutzler DS (1991) Interannual fluctuations of intraseasonal variance of near-equatorial winds. J Geophys Res 96:3173–3185

    Google Scholar 

  • Hayashi Y (1982) Space–time spectral analysis and its application to atmospheric waves. J Meteorol Soc Jpn 60:156–171

    Google Scholar 

  • Holand GJ (1995) Scale interaction in the western Pacific monsoon. Meteorol Atmos Phys 56:57–79. doi:10.1007/BF01022521

    Article  Google Scholar 

  • Holtslag AAM, Boville BA (1993) Local versus nonlocal boundary layer diffusion in a global climate model. J Clim 6:1825–1642. doi:10.1175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2

    Article  Google Scholar 

  • Inness PM, Slingo JM, Woolnough SJ, Neale RB, Pope VD (2001) Organization of tropical convection in a GCM with varying vertical resolution: implications for the simulation of the Madden–Julian oscillation. Clim Dyn 17:777–793. doi:10.1007/s003820000148

    Article  Google Scholar 

  • Jin F-F, Lin L, Timmermann A, Zhao J (2007) Ensemble-mean dynamics of the ENSO recharge oscillator under state-dependent stochastic forcing. Geophys Res Lett 34:L03807. doi:10.1029/2006GL027372

    Article  Google Scholar 

  • Kalnay E et al. (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Metab Soc 77:437–471. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

    Google Scholar 

  • Keen RA (1982) The role of cross-equatorial cyclone pairs in the Southern Oscillation. Mon Weather Rev 110:1405–1416. doi:10.1175/1520-0493(1982)110<1405:TROCET>2.0.CO;2

    Article  Google Scholar 

  • Kerr RA (1999) Big El Ninos ride the back of slower climate change. Science 283:1108–1109. doi:10.1126/science.283.5405.1108

    Article  Google Scholar 

  • Kessler WS, Kleeman R (2000) Rectification of the Madden–Julian Oscillation into the ENSO cycle. J Clim 13:3560–3575. doi:10.1175/1520-0442(2000)013<3560:ROTMJO>2.0.CO;2

    Article  Google Scholar 

  • Kim D, Kug J-S, Kang I-S, Jin F-F, Wittenberg AT (2008) Tropical Pacific impacts of convective momentum transport in the SNU coupled GCM. Clim Dyn. doi:10.1007/s00382-007-0348-4

  • Kug J-S, An S-I, Jin F-F, Kang I-S (2005) Preconditions for El Nino and La Nina onsets and their relation to the Indian Ocean. Geophys Res Lett 32:L05706. doi:10.1029/2004GL021674

    Article  Google Scholar 

  • Kug J-S, Kang I-S (2006) Interactive feedback between the Indian Ocean and ENSO. J Clim 19:1784–1801. doi:10.1175/JCLI3660.1

    Article  Google Scholar 

  • Kug J-S, Jin F-F, Sooraj KP, Kang I-S (2008a) Evidence of the state-dependent atmospheric noise associated with ENSO. Geophys Res Lett. doi:10.1029/2007GL032450

  • Kug J-S, Sooraj KP, Kim D, Kang I-S, Jin F-F, Takayabu YN et al (2008b) Simulation of state-dependent high frequency atmospheric variability associated with ENSO. Clim Dyn. doi:10.1007/s00382-008-0434-2

  • Kug J-S, Kang I-S, Choi D-H (2008c) Seasonal climate predictability with tier-one and tier-two prediction systems. Clim Dyn. doi:10.1007/s00382-007-0264-7

  • Lengaigne M, Guilyardi E, Boulanger JP, Menkes C, Delecluse P, Inness P et al (2004) Triggering of El Nino by westerly wind events in a coupled general circulation model. Clim Dyn 23:601–620. doi:10.1007/s00382-004-0457-2

    Article  Google Scholar 

  • Le Treut H, Li Z-X (1991) Sensitivity of an atmospheric general circulation model to prescribed SST changes: feedback effects associated with the simulation of cloud optical properties. Clim Dyn 5:175–187

    Google Scholar 

  • Luther DS, Harrison DE, Knox RA (1983) Zonal winds in the central equatorial Pacific and El Nino. Science 222:327–330. doi:10.1126/science.222.4621.327

    Article  Google Scholar 

  • Maloney ED, Hartmann DL (2001) The Madden–Julian oscillation, barotropic dynamics and North Pacific tropical cyclone formation. Part I: observation. J Atmos Sci 58:2545–2558. doi:10.1175/1520-0469(2001)058<2545:TMJOBD>2.0.CO;2

    Article  Google Scholar 

  • McPhaden MJ (1999) Genesis and evolution of the 1997–1998 El Nino. Science 283:950–954. doi:10.1126/science.283.5404.950

    Article  Google Scholar 

  • McPhaden MJ (2004) Evolution of the 2002–03 El Nino. Bull Am Meteorol Soc 85:677–695. doi:10.1175/BAMS-85-5-677

    Article  Google Scholar 

  • Nakajima T, Tsukamoto M, Tsushima Y, Numaguti A (1995) Modelling of the radiative processes in an AGCM. In: Matsuno T (ed) Climate system dynamics and modelling, vol 1–3, University of Tokyo, Tokyo, pp 104–123

  • Neale RB, Hoskins BJ (2000) A standard test for AGCMs and their physical parameterizations. I: the proposal. Atmos Sci Lett 1:101–107. doi:10.1006/asle.2000.0019

    Article  Google Scholar 

  • Noh Y, Kim HJ (1999) Simulations of temperature and turbulence structure of the oceanic boundary layer with the improved near‐surface process. J Geophys Res Oceans 104:15621–15634. doi:10.1029/1999JC900068

    Article  Google Scholar 

  • Numaguti A, Takahashi M, Nakajima T, Sumi A (1995) Development of an atmospheric general circulation model. In: Matsuno T (ed) Climate system dynamics and modelling, vol 1–3, University of Tokyo, Tokyo, pp 104–123

  • Perez CL, Moore AM, Zavaly-Garay J, Kleeman R (2005) A comparison of the influence of additive and multiplicative stochastic forcing on a coupled model of ENSO. J Clim 18:5066–5085. doi:10.1175/JCLI3596.1

    Article  Google Scholar 

  • Perigaud C, Cassou C (2000) Importance of oceanic decadal trends and westerly wind bursts for forecasting El Nino. Geophys Res Lett 27:389–392. doi:10.1029/1999GL010781

    Article  Google Scholar 

  • Seiki A, Takayabu YN (2007a) Westerly wind bursts and their relationship with intraseasonal variations and ENSO, Part I: statistics. Mon Weather Rev (in press)

  • Seiki A, Takayabu YN (2007b) Westerly wind bursts and their relationship with intraseasonal variations and ENSO, Part II: energetics over the Western and Central Pacific. Mon Weather Rev (in press)

  • Slingo JM, Sperber KS, Boyle JS, Ceren JP, Dix M, Dugas B et al (1996) Intraseasonal oscillations in 15 atmospheric general circulation models: results from an AMIP Diagnostic subproject. Clim Dyn 12:325–357. doi:10.1007/BF00231106

    Article  Google Scholar 

  • Smith TM, Reynolds RW (2004) Improved extended reconstruction of SST (1854–1997). J Clim 17:2466–2477. doi:10.1175/1520-0442(2004)017<2466:IEROS>2.0.CO;2

    Article  Google Scholar 

  • Sobel AH, Bretherton CS (1999) Development of synoptic-scale disturbances over the summertime tropical northwest Pacific. J Atmos Sci 56:3106–3127. doi:10.1175/1520-0469(1999)056<3106:DOSSDO>2.0.CO;2

    Article  Google Scholar 

  • Sperber KR, Slingo JM, Inness PM, Lau WK-M (1997) On the maintenance and initiation of the intraseasonal oscillation in the NCEP/NCAR reanalysis and in the GLA and UKMO AMIP simulations. Clim Dyn 13:769–795. doi:10.1007/s003820050197

    Article  Google Scholar 

  • Stevens DE (1979) Vorticity, momentum and divergence budgets of synoptic-scale wave disturbances in the tropical eastern Atlantic. Mon Weather Rev 107:535–550. doi:10.1175/1520-0493(1979)107<0535:VMADBO>2.0.CO;2

    Article  Google Scholar 

  • Stevens DE, Lindzen RS, Shapiro LJ (1977) A new model of tropical waves incorporating momentum mixing by cumulus convection. Dyn Atmos Oceans 1:365–425. doi:10.1016/0377-0265(77)90001-X

    Article  Google Scholar 

  • Stones PH, Quirk WJ, Somerville RCJ (1974) The effect of small-scale vertical mixing of horizontal momentum in a general circulation model. Mon Weather Rev 102:765–771. doi:10.1175/1520-0493(1974)102<0765:TEOSSV>2.0.CO;2

    Article  Google Scholar 

  • Tiedtke M (1983) The sensitivity of the time–mean large-scale flow to cumulus convection in the ECMWF model. Workshop on convection in large-scale numerical models. ECMWF, November 28–December 1 1983, pp 297–316

  • Vecchi GA, Harrison DE (2000) Tropical Pacific sea surface temperature anomalies, El Nino and equatorial westerly events. J Clim 13:1814–1830. doi:10.1175/1520-0442(2000)013<1814:TPSSTA>2.0.CO;2

    Article  Google Scholar 

  • Wang B, Xie X (1996) Low-frequency equatorial waves in vertically sheared zonal flow. Part I: stable waves. J Atmos Sci 53:449–467. doi:10.1175/1520-0469(1996)053<0449:LFEWIV>2.0.CO;2

    Article  Google Scholar 

  • Wang B, Xie X (1997) A model for boreal summer intraseasonal oscillation. J Atmos Sci 54:72–86. doi:10.1175/1520-0469(1997)054<0072:AMFTBS>2.0.CO;2

    Article  Google Scholar 

  • Weisberg RH, Wang C (1997) Slow variability in the equatorial west-central Pacific in relation to ENSO. J Clim 10:1998–2017. doi:10.1175/1520-0442(1997)010<1998:SVITEW>2.0.CO;2

    Article  Google Scholar 

  • Wu XQ, Yanai M (1994) Effects of vertical wind shear on the cumulus transport of momentum—observations and parameterization. J Atmos Sci 51:1640–1660. doi:10.1175/1520-0469(1994)051<1640:EOVWSO>2.0.CO;2

    Article  Google Scholar 

  • Xie X, Wang B (1996) Low-frequency equatorial waves in vertically sheared zonal flow. Part II: unstable waves. J Atmos Sci 53:3589–3605. doi:10.1175/1520-0469(1996)053<3589:LFEWIV>2.0.CO;2

    Article  Google Scholar 

  • Yu L, Weller RA, Liu TW (2003) Case analysis of a role of ENSO in regulating the generation of westerly wind bursts in the western equatorial Pacific. J Geophys Res 108:3128. doi:10.1029/2002JC001498

    Article  Google Scholar 

  • Zavala-Garay J, Zhang C, Moore A, Kleeman R (2005) The linear response of ENSO to the Madden–Julian oscillation. J Clim 18:2441–2459. doi:10.1175/JCLI3408.1

    Article  Google Scholar 

  • Zhang C, Dong Min, Gualdi S, Hendon HH, Maloney ED, Marshall A, Sperber KR, Wang W (2006) Simulations of the Madden–Julian oscillation in four pairs of coupled and uncoupled global models. Clim Dyn. doi:10.1007/s00382-006-0148-2

Download references

Acknowledgments

The work was supported by the SRC program of Korea Science and Engineering Foundation, and Brain Korea 21 Project. F.-F. Jin and J.-S. Kug were partly supported by NSF grants ATM-0652145 and ATM-0650552 and NOAA grants GC01-229. S.-W. Yeh is supported by KORDI (PG47100, PE98004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Seong Kug.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sooraj, K.P., Kim, D., Kug, JS. et al. Effects of the low-frequency zonal wind variation on the high frequency atmospheric variability over the tropics. Clim Dyn 33, 495–507 (2009). https://doi.org/10.1007/s00382-008-0483-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-008-0483-6

Keywords

Navigation