Skip to main content
Log in

The thermoinsulation effect of snow cover within a climate model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

We use a state of the art climate model (CAM3–CLM3) to investigate the sensitivity of surface climate and land surface processes to treatments of snow thermal conductivity. In the first set of experiments, the thermal conductivity of snow at each grid cell is set to that of the underlying soil (SC-SOIL), effectively eliminating any insulation effect. This scenario is compared against a control run (CTRL), where snow thermal conductivity is determined as a prognostic function of snow density. In the second set of experiments, high (SC-HI) and low (SC-LO) thermal conductivity values for snow are prescribed, based on upper and lower observed limits. These two scenarios are used to envelop model sensitivity to the range of realistic observed thermal conductivities. In both sets of experiments, the high conductivity/low insulation cases show increased heat exchange, with anomalous heat fluxes from the soil to the atmosphere during the winter and from the atmosphere to the soil during the summer. The increase in surface heat exchange leads to soil cooling of up to 20 K in the winter, anomalies that persist (though damped) into the summer season. The heat exchange also drives an asymmetric seasonal response in near-surface air temperatures, with boreal winter anomalies of +6 K and boreal summer anomalies of −2 K. On an annual basis there is a net loss of heat from the soil and increases in ground ice, leading to reductions in infiltration, evapotranspiration, and photosynthesis. Our results show land surface processes and the surface climate within CAM3–CLM3 are sensitive to the treatment of snow thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Alexander MA, Bhatt US, Walsh JE, Timlin MS, Miller JS, Scott JD (2004) The atmospheric response of realistic Arctic sea ice anomalies in an AGCM during winter. J Clim 17:890–905

    Article  Google Scholar 

  • Alexeev VA, Ncolsky DJ, Romanovsky VE, Lawrence DM (2007) An evaluation of deep soil configurations in the CLM3 for improved representation of permafrost. Geophys Res Lett, 34. doi:10.1029/2007GL029536

  • Anisimov OA, Nelson FE (1997) Permafrost zonation and climate change in the northern hemisphere: results from transient general circulation models. Clim Change 35:241–258

    Article  Google Scholar 

  • Anisimov OA, Shiklamanov NI, Nelson FE (1997) Global warming and active-layer thickness: results from transient general circulation models. Glob Planet Change 15:61–77

    Article  Google Scholar 

  • Armstrong RL, Brodzik MJ (2005) Northern hemisphere EASE-Grid weekly snow cover and sea ice extent version 3. National Snow and Ice Data Center, Boulder (Digital Media)

  • Barnett TP, Dumenil L, Schlese U, Roeckner E, Latif M (1989) The effect of eurasian snow cover on regional and global climate variations. J Atmos Sci 46:661–686

    Article  Google Scholar 

  • Barry RG, Armstrong R, Callaghan T et al (2007) Snow. In: Global outlook for ice & snow. United Nations Environment Programme, pp 39–62

  • Bonan GB, Pollard D, Thompson SL (1992) Effects of boreal forest vegetation on global climate. Nature 359:716–718

    Article  Google Scholar 

  • Bonan GB, Oleson KW, Vertenstein M, Levis S, Zeng X, Dai Y, Dickinson RE, Yang ZL (2002) The land surface climatology of the Community Land Model coupled to the NCAR Community Climate Model. J Clim 15:3123–3149

    Article  Google Scholar 

  • Boucher O, Myhre G, Myhre A (2004) Direct human influence of irrigation on atmospheric water vapour and climate. Clim Dyn 22:597–603

    Article  Google Scholar 

  • Boville BA, Rasch PJ, Hack JJ, McCaa JR (2006) Representation of clouds and precipitation processes in the community atmosphere model version 3 (CAM3). J Clim 19:2184–2198

    Article  Google Scholar 

  • Brovkin V, Claussen M, Driesschaert E, Fichefet T, Kicklighter D, Loutre MF, Matthews HD, Ramankutty N, Schaeffer M, Sokolov A (2006) Biogeophysical effects of historical land cover changes simulated by six Earth system models of intermediate complexity. Clim Dyn 26:587–600

    Article  Google Scholar 

  • Brown RD (2000) Northern hemisphere snow cover variability and change, 1915–97. J Clim 13:2339–2355

    Article  Google Scholar 

  • Cary JW, Campbell GS, Papendick RI (1978) Is the soil frozen? An algorithm using weather records. Water Resour Res 14:1117–1122

    Article  Google Scholar 

  • Cess RD, Potter GL, Zhang MH (1991) Interpretation of snow-climate feedback as produced by 17 general circulation models. Science 253:888–892

    Article  Google Scholar 

  • Chapin FS, Shaver GR, Giblin AE, Nadelhoffer KJ, Laundre JA (1995) Responses of Arctic Tundra to experimental and observed changes in climate. Ecology 76:694–711

    Article  Google Scholar 

  • Cohen J, Rind D (1991) The effect of snow cover on the climate. J Clim 4:689–706

    Article  Google Scholar 

  • Cohen J, Entekhabi D (1999) Eurasian snow cover variability and northern hemisphere climate predictibility. Geophys Res Lett 26:345–348

    Article  Google Scholar 

  • Collins WD, Rasch PJ, Boville BA, Hack JJ, McCaa JR, Williamson DL, Kiehl JT, Briegleb B, Bitz C, Lin SJ, Zhang M, Dai Y (2004) Description of the NCAR community atmosphere model (CAM3). Technical Note NCAR/TN-464 + STR, National Center for Atmospheric Research, P.O. Box 3000, Boulder, Colorado, 80307-3000, 226 p

  • Collins WD, Bitz CM, Blackmon ML, Bonan GB, Bretherton CS, Carton JA, Change P, Doney SC, Hack JJ, Henderson TB, Kiehl JT, Large WG, McKenna DS, Santer BD, Smith RD (2006a) The community climate system model version 3 (CCSM3). J Clim 19:2122–2143

    Article  Google Scholar 

  • Collins WD, Rasch PJ, Boville BA, Hack JJ, McCaa JR, Williamson DL, Briegleb BP, Bitz CM, Lin SJ, Zhang M (2006b) The formulation and atmospheric simulation of the Community Atmosphere Model: CAM3. J Clim 19:2144–2161

    Article  Google Scholar 

  • Dickinson RE, Oleson KW, Bonan GB, Hoffman F, Thornton PE, Vertenstein M, Yang ZL, Zeng X (2006) The Community Land Model and its climate statistics as a component of the Community Climate System Model. J Clim 19:2302–2324

    Article  Google Scholar 

  • Farouki OT (1981) The thermal properties of soils in cold regions. Cold Reg Sci Technol 5:67–75

    Article  Google Scholar 

  • Frei A, Gong G (2005) Decadal to century scale trends in North American snow extent in coupled atmosphere–ocean general circulation models. Geophys Res Lett 32. doi:10.1029/2005GL023394

  • Gallimore R, Jacob R, Kutzbach J (2005) Coupled atmosphere–ocean-vegetation simulations for modern and mid-Holocene climates: role of extratropical vegetation cover feedbacks. Clim Dyn 25:755–776

    Article  Google Scholar 

  • Goodrich LE (1982) The influence of snow cover on the ground thermal regime. Can Geotech J 19:421–432

    Google Scholar 

  • Goulden ML, Wofsy SC, Harden JW et al (1998) Sensitivity of boreal carbon balance to soil thaw. Science 279:214–217

    Article  Google Scholar 

  • Groffman PM, Driscoll CT, Fahey TJ, Handy JP, Fitzhugh RD, Tiernay GL (2001) Colder soils in a warmer world: a snow manipulation study in a northern hardwood forest ecosystem. Biogeochemistry 56:135–150

    Article  Google Scholar 

  • Handy JP, Groffman PM, Fitzhugh RD, Henry KS, Welman AT, Demers JD, Fahey TJ, Driscoll CT, Tiernay G, Nolan S (2001) Snow depth manipulation and its influence on soil frost and water dynamics in a northern hardwood forest. Biogeochemistry 56:151–174

    Article  Google Scholar 

  • Hurrell JW, Hack JJ, Phillip AS, Caron J, Yin J (2006) The dynamical simulation of the community atmosphere model version 3 (CAM3). J Clim 19:2162–2183

    Article  Google Scholar 

  • Jordan R (1991) A one-dimensional temperature model for a snow cover: technical documentation for SNTHERM, 89. U.S. Army Cold Regions Research and Engineering Laboratory, Special Report 91–16

  • Kleidon A, Fraedrich K, Heimann M (2000) A green planet versus a desert world: estimating the maximum effect of vegetation on the land surface climate. Clim Change 44:471–493

    Article  Google Scholar 

  • Hack JJ, Caron JM, Yeager SG, Oleson KW, Holland MM, Truesdale JE, Rasch PJ (2006) Simulation of the global hydrological cycle in the CCSM community atmosphere model version 3 (CAM3): mean features. J Clim 19:2199–2221

    Article  Google Scholar 

  • Hall A (2004) The role of surface albedo feedback in climate. J Clim 17:1550–1568

    Article  Google Scholar 

  • Hall A, Qiu X (2006) Using the seasonal cycle to constrain snow albedo feedback in future climate change. Geophys Res Lett 33. doi:10.1029/2005GL025127

  • Hinzman LD, Kane DL, Bensen CS, Everett KR (1996) Energy balance and hydrological processes in an Arctic watershed. Ecol Stud 120:131–154

    Google Scholar 

  • Kane DL, Hinzman LD, Bensen CS, Liston GE (1991) Snow hydrology of a headwater Arctic basin. Water Resour Res 27:1099–1109

    Article  Google Scholar 

  • Lawrence DM, Chase TN (2007) Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0). J Geophys Res 112. doi:10.1029/2006JG000168

  • Lawrence DM, Slater AG (2005) A projection of severe near-surface permafrost degradation during the 21st century. Geophys Res Lett 32. doi:10.1029/2005GL025080

  • Lawrence DM, Thornton PE, Oleson KW, Bonan GB (2007) The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: impacts on land–atmosphere interaction. J Hydrometeorol 8:862–880

    Article  Google Scholar 

  • Ling F, Zhang T (2003) Impact of the timing and duration of seasonal snow cover on the active layer and permafrost in the Alaskan Arctic. Permafrost Periglacial Process 14:141–150

    Article  Google Scholar 

  • Luo L, Robock A, Vinnikov KY, Schlosser CA, Slater AG, Boone A, Braden H, Cox P, De Rosnay P, Dickinson RE, Dai Y, Duan Q, Etchevers P, Henderson-Sellers A, Gedney N, Gusev YM, Habets F, Kim J, Kowalczyk E, Mitchell K, Nasonova ON, Noilhan J, Pitman AJ, Schaake J, Shmakin AB, Smirnova TG, Wetzel P, Xue Y, Yang ZL, Zeng QC (2003) Effects of frozen soil on soil temperature, spring infiltration, and runoff: results from the PILPS 2(d) experiment at Valdai, Russia. J Hydrometeorol 4:334–351

    Article  Google Scholar 

  • Matthews HD, Weaver AJ, Eby M, Meissner KJ (2003) Radiative forcing of climate by historical land cover change. Geophys Res Lett 30. doi:10.1029/2002GL016098

  • Molders N, Walsh JE (2004) Atmospheric response to soil–frost and snow in Alaska in March. Theor Appl Climatol 77:77–105

    Article  Google Scholar 

  • Nicolsky DJ, Romanovsky VE, Alexeev VA, Lawrence DM (2007) Improved modeling of permafrost dynamics in a GCM land-surface scheme. Geophys Res Lett. doi:10.1029/2007GL029525

  • Niu GY, Yang ZL (2006) Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale. J Hydrometeorol 7:937–952

    Article  Google Scholar 

  • Oleson KW, Dai Y, Bonan GB, Bosilovich M, Dickinson R, Dirmeyer P, Hoffman F, Houser P, Levis S, Niu GY, Thornton PE, Vertenstein M, Yang ZL, Zeng X (2004) Technical description of the community land model (CLM). Technical Note NCAR/TN-461 + STR, National Center for Atmospheric Research, P.O. Box 3000, Boulder, Colorado, 80307-3000, 173 p

  • Qu X, Hall A (2006) Assessing snow albedo feedbacks in simulated climate change. J Clim 19:2617–2630

    Article  Google Scholar 

  • Randall DA, Cess RD, Blanchet JP et al (1994) Analysis of snow feedbacks in 14 general circulation models. J Geophys Res 99:20,757–20772

    Google Scholar 

  • Sazonova TS, Romanovsky VE (2003) A model for regional-scale estimation of temporal and spatial variability of active layer thickness and mean annual ground temperatures. Permafrost Periglacial Process 14:125–139

    Article  Google Scholar 

  • Serreze MC, Bromwich DH, Clark MP, Etringer AJ, Zhang T, Lammers R (2003) Large-scale hydro-climatology of the terrestrial Arctic drainage system. J Geophys Res 108. doi:10.1029/2001JD000919

  • Shiklomanov NI, Nelson FE (1999) Analytic representation of the active layer thickness field, Kuparuk River Basin, Alaska. Ecol Model 123:105–125

    Article  Google Scholar 

  • Shukla J, Mintz (1982) Influence of land–surface evapotranspiration on earth’s climate. Science 215:1498–1501

    Article  Google Scholar 

  • Sokratov SA, Barry RG (2002) Intraseasonal variation in the thermoinsulation effect of snow cover on soil temperatures and energy balance. J Geophys Res. doi:10.1029/2001JD000489

  • Stendel M, Christensen JH (2002) Impact of global warming on permafrost condition in a coupled GCM. Geophys Res Lett 29(13):10-1–10-4

    Article  Google Scholar 

  • Sturm M, Racine C, Tape K (2001) Climate change: increasing shrub abundance in the Arctic. Nature 411:546–547

    Article  Google Scholar 

  • Sturm M, Schimel J, Michaelson G, Welker JM, Oberbauer SF, Liston GE, Fahnestock J, Romanovsky VE (2005) Winter biological processes could help convert Arctic Tundra to Shrubland. Bioscience 55:17–26

    Article  Google Scholar 

  • Vavrus S (2007) The role of terrestrial snow cover in the climate system. Clim Dyn 29:73–88

    Article  Google Scholar 

  • Willis WO, Carlson CW, Alessi J, Hass HJ (1961) Depth of freezing and spring runoff as related to fall soil-moisture level. Soil Sci Soc Am J 41:115–123

    Google Scholar 

  • Willmott CJ, Matsuura K (2000) Terrestrial air temperature and precipitation. Monthly and Annual Climatologies. (Available online at http://climate.geog.udel.edu/~climate)

  • Zhang T, Osterkamp TE, Stamnes K (1996) Influence of the depth hoar layer of the seasonal snow cover on the ground thermal regime. Water Resour Res 32:2075–2086

    Article  Google Scholar 

  • Zhang T, Osterkamp TE, Stamnes K (1997) Effects of climate on the active layer and permafrost on the North Slope of Alaska, USA. Permafrost Periglacial Process 8:45–67

    Article  Google Scholar 

  • Zhang T, Stamnes K, Bowling SA (2001) Impact of the atmospheric thickness on the atmospheric downwelling longwave radiation and snowmelt under clear-sky conditions in the Arctic and Subarctic. J Clim 14:920–939

    Article  Google Scholar 

  • Zhang T (2005) Influence of the seasonal snow cover on the ground thermal regime: an overview. Rev Geophys 43. doi:RG4002/2005

Download references

Acknowledgments

This work was supported, in part, by NSF Grant #OPP-0531166, Greening of the Arctic. The authors wish to thank two anonymous reviewers for useful comments. BIC acknowledges the academic and financial support of the University of Virginia Department of Environmental Sciences and the National Center for Atmospheric Research. The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin I. Cook.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cook, B.I., Bonan, G.B., Levis, S. et al. The thermoinsulation effect of snow cover within a climate model. Clim Dyn 31, 107–124 (2008). https://doi.org/10.1007/s00382-007-0341-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-007-0341-y

Keywords

Navigation