Skip to main content

Advertisement

Log in

Air–sea coupling in the North Atlantic during summer

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

In this work, we have investigated the evolution of the summer air–sea interaction in the North Atlantic Ocean and the physical processes involved using reanalysis data and model simulation. It is found that an atmosphere disturbance over the North Atlantic Ocean in the preceding winter favors the build-up of a North Atlantic horseshoe-like sea surface temperature anomaly (SSTA) pattern in the summer through modifying the northeast trade winds and changing ocean upwelling and downwelling. The changed ocean condition (SSTA, upwelling, and downwelling) further intensifies the atmosphere disturbance as a positive feedback. The thermal advection of the atmosphere disturbance weakens the SSTA pattern in the following autumn and winter. The anomalous circulation associated with the air–sea interaction in the observations is characterized by a barotropic structure in the middle and high latitudes of the North Atlantic Ocean. The baroclinic component is enhanced in the model simulation, particularly in the seasons from summer to winter. The life cycle of the air–sea interaction is about 1 year in both the observations and simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alexander M, Deser C, Timlin M (1998) The re-emergence of SST anomalies in the North Pacific Ocean. J Clim 12:2419–2431

    Article  Google Scholar 

  • Bhatt US, Alexander M, Battisti D, Houghton D, Keller L (1998) Atmosphere-ocean interaction in the North Atlantic: near surface climate variability. J Clim 11:1615–1632

    Article  Google Scholar 

  • Bretherton CS, Battisti DS (2000) An interpretation of the results from atmospheric general circulation models forced by the time history of the observed sea surface temperature distribution. Geophys Res Lett 27(6):767–770. DOI 10.1029/1999GL010910

    Google Scholar 

  • Cassou C, Deser C, Terray L, Hurrell JW, Drevillon M (2004) Summer sea surface temperature conditions in the North Atlantic and their impact upon the atmospheric circulation in early winter. J Clim 17:3349–3363

    Article  Google Scholar 

  • Chang P, Ji L, Li H (1997) A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air–sea interactions. Nature 385:516–518

    Article  Google Scholar 

  • Czaja A, Frankignoul C (1999) Influence of the North Atlantic SST anomalies on the atmospheric circulation. Geophys Res Lett 26:2969–2972

    Article  Google Scholar 

  • Czaja A, Frankignoul C (2002) Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J Clim 15:606–623

    Article  Google Scholar 

  • Déqué M, Dreveton C, Braun A, Cariolle D (1994) The climate version of Arpege/IFS: a contribution to the French community climate modelling. Clim Dyn 10:249–266

    Article  Google Scholar 

  • Hoerling MP, Hurrell JW, Xu T (2001) Tropical origins for recent North Atlantic climate change. Science 292:90–92

    Article  PubMed  Google Scholar 

  • Hoerling MP, Hurrell JW, Xu T, Bates GT, Phillips AS (2004) Twentieth century North Atlantic climate change. Part II: Understanding the effect of Indian Ocean warming. Clim Dyn 23:391–405. DOI 10.1007/s00382-004-0433-x

    Google Scholar 

  • Hu Z-Z, Huang B (2006) On the significance of the relationship between the North Atlantic Oscillation in early winter and Atlantic SST anomalies. J Geophys Res (in press)

  • Huang B, Shukla J (2005) Ocean–atmosphere interactions in the tropical and subtropical Atlantic Ocean. J Clim 18:1652–1672

    Article  Google Scholar 

  • Huang B, Schopf PS, Shukla J (2004) Intrinsic ocean–atmosphere variability of the tropical Atlantic Ocean. J Clim 17:2058–2077

    Article  Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation and relationships to regional temperature and precipitation. Science 269:676–679

    Article  Google Scholar 

  • Hurrell JW, Kushnir Y, Otterson G, Visbeck M (2003) An overview of the North Atlantic Oscillation. In: Hurrell JW, Kushnir Y, Otterson G, Visbeck M (eds) The North Atlantic Oscillation: climate significance and environmental impact. Geophysical Monograph, vol. 134, pp 1–35

  • Hurrell JW, Hoerling MP, Phillips AS, Xu T (2004) Twentieth century North Atlantic climate change. Part I: Assessing determinism. Clim Dyn 23:371–389. DOI 10.1007/s00382-004-0432-y

    Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Latif M, Arpe K, Roeckner E (2000) Oceanic control of decadal North Atlantic sea level pressure variability in winter. Geophys Res Lett 27:727–730

    Article  Google Scholar 

  • Mehta VM, Suarez MJ, Manganello JV, Delworth TL (2000) Oceanic influence on the North Atlantic oscillation and associated Northern Hemisphere climate variations: 1959–1993. Geophys Res Lett 27:121–124

    Article  Google Scholar 

  • North GR, Bell TL, Cahalan RF, Moeng FJ (1982) Sampling errors in the estimation of empirical orthogonal functions. Mon Weather Rev 110:699–706

    Article  Google Scholar 

  • Peng S, Mysak LA, Ritchie H, Deromem J, Dugas B (1995) The difference between early and midwinter atmospheric responses to sea surface temperature anomalies in the northwest Atlantic. J Clim 8:137–157

    Article  Google Scholar 

  • Peng S, Robinson WA, Li S (2003) Mechanisms for the NAO responses to the North Atlantic SST tripole. J Clim 16:1987–2004

    Article  Google Scholar 

  • Peng S, Robinson WA, Li S, Hoerling MP (2005) Tropical Atlantic SST forcing of coupled North Atlantic seasonal responses. J Clim 18:480–496

    Article  Google Scholar 

  • Press WT, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes in Fortran, the Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge, UK, pp 1–963

    Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of SST, sea ice and night marine air temperature since the late nineteenth century. J Geophys Res 108. DOI 10.1029/2002JD002670

  • Rodwell MJ, Folland CK (2002) Atlantic air–sea interaction and seasonal predictability. Q J R Meteorol Soc 128:1413–1443

    Article  Google Scholar 

  • Rodwell MJ, Rowell DP, Folland CK (1999) Oceanic forcing of the winter North Atlantic Oscillation and European climate. Nature 398:320–323

    Article  Google Scholar 

  • Rodwell MJ, Drevillon M, Frankignoul C, Hurrell JW, Pohlmann H, Stendel M, Sutton RT (2004) North Atlantic forcing of climate and its uncertainty from a multi-model experiment. Q J R Meteorol Soc 130:2013–2032

    Article  Google Scholar 

  • Schneider EK, Kirtman BP, Fan Y, Zhu Z (2001) Retrospective ENSO forecasts: the effect of ocean resolution. COLA Tech Rep 109:1–27

    Google Scholar 

  • Schneider EK, Bengtsson L, Hu Z-Z (2003) Forcing of Northern Hemisphere climate trends. J Atmos Sci 60:1504–1521

    Article  Google Scholar 

  • Schopf PS, Loughe A (1995) A reduced gravity isopycnal ocean model: hindcasts of El Niño. Mon Weather Rev 123:2839–2863

    Article  Google Scholar 

  • Sutton RT, Norton WA, Jewson SP (2001) The North Atlantic Oscillation—What role for the ocean? Atmos Sci Lett 1:89–100. DOI 10.1006/asle.2000.0018

    Google Scholar 

  • Terray L, Cassou C (2002) Tropical Atlantic sea surface temperature forcing of quasi-decadal climate variability over the North Atlantic-European region. J Clim 15(22):3170–3187

    Article  Google Scholar 

  • Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the northern hemisphere winter. Mon Weather Rev 109:784–812

    Article  Google Scholar 

  • Watanabe M, Kimoto M, Nitta T, Kachi M (1999) A comparison of decadal climate oscillations in the North Atlantic detected in observations and a coupled GCM. J Clim 12:2920–2940

    Article  Google Scholar 

  • Xie S-P (1999) A dynamic ocean–atmosphere model of the tropical Atlantic decadal variability. J Clim 12:64–70

    Google Scholar 

  • Xie PP, Arkin PA (1996) Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J Clim 9:840–858

    Article  Google Scholar 

  • Zebiak SE (1993) Air–sea interaction in the equatorial Atlantic region. J Clim 8:1567–1586

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank D. Straus, E. Manzini, and two anonymous reviewers for their suggestions and comments to significantly improve the manuscript. We are grateful for the advice and support of J. Shukla and L. Bengtsson. We also like to thank P. Schopf for his help to develop the coupled model. This work was supported by NOAA CLIVAR Atlantic Program (NA169PI570 and NA04OAR4310115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeng-Zhen Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, ZZ., Huang, B. Air–sea coupling in the North Atlantic during summer. Clim Dyn 26, 441–457 (2006). https://doi.org/10.1007/s00382-005-0094-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-005-0094-4

Keywords

Navigation