Skip to main content

Advertisement

Log in

Recurrent climate winter regimes in reconstructed and modelled 500 hPa geopotential height fields over the North Atlantic/European sector 1659–1990

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Recurrent climate winter regimes are examined from statistically reconstructed and modelled 500 hPa geopotential height fields over the North Atlantic/European sector for the period 1659–1990. We investigate the probability density function of the state space spanned by the first two empirical orthogonal functions of combined winter data. Regimes are detected as patterns that correspond to areas of the state space with an unexpected high recurrence probability using a Monte Carlo approach. The reconstruction and the model reveal four recurrent climate regimes. They correspond to the two phases of the North Atlantic Oscillation and two opposite blocking patterns. Complemented by the investigation of the temporal evolution of the climate regimes this leads to the conclusion that the reconstructed and the modelled data for this geographic sector reproduce low-frequency atmospheric variability in the form of regime-like behaviour. The overall evidence for recurrent climate regimes is higher for the model than for the reconstruction. However, comparisons with independent data sources for the period 1659–1990 revealed a more realistic temporal evolution of the regimes for the reconstructed data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Barnston AG, Lizevey RE (1987) Classification, seasonality, and persistence of low-frequency atmospheric circulation patterns. Mon Wea Rev 115:1083–1126

    Article  Google Scholar 

  • Baur F, Hess P, Nagel H (1944) Kalender der Grosswetterlagen Europas 1881–1939. Bad Homburg

  • Blunier T, Chappellaz J, Schwander J, Stauffer B, Raynaud D (1995) Variations in atmospheric methane concentration during the Holocene epoch. Nature 374:46–49

    Article  Google Scholar 

  • Cassou C, Terray L, Hurrell JW, Deser C (2004) North Atlantic winter climate regimes: spatial asymmetry, stationarity with time and oceanic forcing. J Climate 17:1055–1068

    Article  Google Scholar 

  • Charney JG, DeVore JG (1979) Multiple flow equilibria in the atmosphere and blocking. J Atmos Sci 36:1205–1216

    Article  Google Scholar 

  • Cook ER, Briffa KR, Jones PD (1994) Spatial regression methods in dendroclimatology – a review and comparison of two techniques. Int J Climatol 14:379–402

    Article  Google Scholar 

  • Corti S, Molteni F, Palmer TN (1999) Signature of recent climate change in frequencies of natural atmospheric circulation regimes. Nature 398:799–802

    Article  Google Scholar 

  • Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289:270–277

    Article  PubMed  Google Scholar 

  • DeSwart HE (1988) Vacillation and predictability properties of low-order atmospheric spectral models. PhD thesis, Utrecht University, The Netherlands

  • Etheridge DM, Steele LP, Langenfelds RL, Francey RJ, Barnola JM, Morgan VI (1996) Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J Geophys Res 101:4115–4128

    Article  Google Scholar 

  • Exner FM (1924) Monatliche Luftdruck- und Temperaturanomalien auf der Erde. Sitzungsberichte d Kaiserl Akad der Wissenschaften 133:307–408

    Google Scholar 

  • Glaser R, Brázdil R, Pfister C, Dobrovólny P, Barriendos Vallvé M, Bokwa A, Camuffo D, Kotyza O, Limanówka D, Rácz L, Rodrigo FS (1999) Seasonal temperature and precipitation fluctuations in selected parts of Europe during the sixteenth century. Clim Change 43:169–200

    Article  Google Scholar 

  • Handorf D, Petoukhov VK, Dethloff K, Eliseev AV, Weisheimer A, Mokhov II (1999) Decadal climate variability in a coupled atmosphere-ocean climate model of moderate complexity. J Geophys Res 104:27253–27276

    Article  Google Scholar 

  • Handorf D, Dorn W, Dethloff K, Rinke A, Weisheimer A (2004) Internal climate variability in global and regional climate models. In: Fischer H, Kumke T, Lohmann G, Flöser G, Miller H, von Storch H, Negendank JFW (eds) The KIHZ project: towards a synthesis of Holocene proxy data and climate models. Springer, Berlin Heidelberg New York, pp 365–382

    Google Scholar 

  • Hannachi A (1997) Low-frequency variability in a GCM: three-dimensional flow regimes and their dynamics. J Climate 10:1357–1379

    Article  Google Scholar 

  • Hasselmann K (1999) Climate change–linear and nonlinear signatures. Nature 398:755–756

    Article  Google Scholar 

  • Hoerling MP, Hurrell JW, Xu T (2001) Tropical origins for recent North Atlantic climate change. Science 292:90–92

    Article  PubMed  Google Scholar 

  • Hsu CJ, Zwiers F (2001) Climate change in recurrent regimes and modes of Northern Hemisphere atmospheric variability. J Geophys Res 106:20145–20159

    Article  Google Scholar 

  • Hurrell JW, van Loon H (1997) Decadal Variations associated with the North Atlantic Oscillation. Clim Change 36:301–326

    Article  Google Scholar 

  • Hurrell JW, Hoerling MP, Phillips AS, Xu T (2004) Twentieth century North Atlantic climate change. Part 1: assessing determinism. Clim Dyn. 23:371-389

    Article  Google Scholar 

  • Kalnay E et al. (1996) The NCEP/NCAR 40-Year Reanalysis Project. B Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kimoto M, Ghil M (1993a) Multiple flow regimes in the Northern Hemisphere winter. Part I: methodology and hemispheric regimes. J Atmos Sci 50:2625–2643

    Article  Google Scholar 

  • Kimoto M, Ghil M (1993b) Multiple flow regimes in the Northern Hemisphere winter. Part II: sectorial regimes and preferred transitions. J Atmos Sci 50:2645–2673

    Article  Google Scholar 

  • Kistler R et al. (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. B Am Meteorol Soc 82:247–267

    Article  Google Scholar 

  • Klein WH, Dai Y (1998) Reconstruction of monthly mean 700-mb heights from surface data by reverse specification. J Climate 11:2136–2146

    Google Scholar 

  • Kosloswki G, Glaser R (1999) Variations in reconstructed ice winter severity in the Western Baltic from 1501–1995, and their implications for the North Atlantic Oscillation. Clim Change 41:175–191

    Article  Google Scholar 

  • Kumar P, Foufoula-Georgiou E (1997) Wavelet analysis for geophysical applications. Rev Geophys 35:385

    Article  Google Scholar 

  • Legras B, Ghil M (1985) Persistent anomalies, blocking, and variations in atmospheric predictability. J Atmos Sci 42:433–471

    Article  Google Scholar 

  • Legutke S, Voss R (1999) The Hamburg atmosphere-ocean coupled circulation model ECHO-G. DKRZ Tech Rep 18, DKRZ, Hamburg, Germany, pp 74

  • Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141

    Article  Google Scholar 

  • Luterbacher J, Rickli R, Xoplaki E, Tinguely C, Beck C, Pfister C, Wanner H (2001) The late maunder minimum (1675–1715) – a key period for studying decadal scale climatic change in Europe. Clim Change 49:441–462

    Article  Google Scholar 

  • Luterbacher J, Xoplaki E, Dietrich D, Rickli R, Jacobeit J, Beck C, Gyalistras D, Schmutz C, Wanner H (2002) Reconstruction of sea level pressure fields over the Eastern North Atlantic and Europe back to 1500. Clim Dyn 18:545–561

    Google Scholar 

  • Mo K, Ghil M (1988) Cluster analysis of multiple planetary flow regimes. J Geophys Res 93:10927–10952

    Article  Google Scholar 

  • Molteni F, Sutera A, Tronci N (1988) The EOFs of the geopotential eddies at 500 mb in winter and their probability density function. J Atmos Sci 45:3063–3080

    Article  Google Scholar 

  • Monahan AH, Fyfe, JC, Flato, GM (2000) Northern Hemisphere atmospheric variability and change under global warming. Geophys Res Lett 27:1139–1142

    Article  Google Scholar 

  • Monahan AH, Pandolfo L, Fyfe JC (2001) The preferred structure of variability of the Northern Hemisphere atmospheric circulation. Geophys Res Lett 28:1019–1022

    Article  Google Scholar 

  • North G, Bell T, Cahalan R, Moeng F (1982) Sampling errors in the estimation of empirical orthogonal functions. Mon Wea Rev 110:699–706

    Article  Google Scholar 

  • Palmer TN (1993) Extended-range atmospheric prediction and the Lorenz model. B Am Meteorol Soc 74:49–65

    Article  Google Scholar 

  • Palmer TN (1999) A nonlinear dynamical perspective on climate prediction. J Climate 12:575–591

    Article  Google Scholar 

  • Pfister C (1999) Wetternachhersage. Haupt, Bern Stuttgart Wien

    Google Scholar 

  • Raible CC, Luksch U, Fraedrich K, Voss R (2001) North Atlantic decadal regimes in a coupled GCM simulation. Clim Dyn 18:321–330

    Article  Google Scholar 

  • Roeckner E, Arpe K, Bengtsson L, Christoph M, Claussen M, Dümenil L, Esch M, Giorgetta M, Schlese U, Schulzweida U (1996) The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. MPI Rep 218, Max Planck Institute for Meteorology, Hamburg

  • Rossby CG (1939) Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J Mar Res 2:38–55

    Google Scholar 

  • Silverman BW (1986) Density estimation for statistics and data analysis. Chapman and Hall, New York

    Google Scholar 

  • Slonosky VC, Jones PD, Davies TD (2000) Variability of the surface atmospheric circulation over Europe, 1774–1995. Int J Climatol 20: 1875–1897

    Article  Google Scholar 

  • Stephenson DB, Hannachi A, O’Neill A (2004) On the existence of multiple climate regimes. Quat J Roy Meteor Soc 130:583–606

    Article  Google Scholar 

  • von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, Cambridge

    Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. B Am Meteorol Soc 79:61–78

    Article  Google Scholar 

  • Vautard R (1990) Multiple weather regimes over the North Atlantic: analysis of precursors and successors. Mon Wea Rev 118:2056–2081

    Article  Google Scholar 

  • Walker GT (1924) Correlation in seasonal variation of weather, IX. Mem Ind Met Dept 25:275–332

    Google Scholar 

  • Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during Northern Hemisphere winter. Mon Wea Rev 109:784–812

    Article  Google Scholar 

  • Wanner H, Pfister C, Brázdil R, Frich P, Frydendahl K, Jónsson T, Kington J, Lamb HH, Rosenørn S, Wishman E (1995) Wintertime European circulation patterns during the Late Maunder Minimum cooling period (1675–1704). Theor Appl Climatol 58:159–165

    Google Scholar 

  • Weisheimer A, Handorf D, Dethloff K (2001) On the structure and variability of atmospheric circulation regimes in coupled climate models. Atmos Sci Lett 2:72–80

    Article  Google Scholar 

  • Wolff JO, Maier-Reimer E, Legutke S (1997) The Hamburg ocean primitive equation model. DKRZ Tech Rep 13, DKRZ, Hamburg

  • Yang S, Reinhold B (1991) How does the low-frequency variance vary? Mon Wea Rev 119:119–127

    Article  Google Scholar 

  • Zorita E, González-Rouco JF (2002) Are temperature sensitive proxies adequate for North Atlantic Oscillation reconstructions? Geophys Res Lett 29, DOI 10.1029/2002GL015404

  • Zorita E, von Storch H, González-Rouco JF, Cubasch U, Luterbacher J, Legutke S, Fischer-Bruns I, Schlese U (2004) Climate evolution in the last five centuries simulated by an atmosphere-ocean model: global temperatures, the North Atlantic Oscillation and the Late Maunder Minimum. Meteor Z 13:271–289

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the members of the group “Modelle und Daten” (M&D) at the Max Planck Institute for Meteorology (MPI), Hamburg, Germany, for providing the data of the model simulation. Luterbacher et al. (2002) reconstructed 500 hPa geopotential height fields which can be downloaded from the NOAA Paleoclimatology World Data Center (WDC), http://www.ngdc.noaa.gov/paleo/pubs/luterbacher2002/luterbacher2002.html. The software for wavelet calculation is provided by Torrence and Compo (1998) available at: http://paos.colorado.edu/research/wavelets/. This work is supported by the National Center for Competence in Research (NCCR) in Climate by the Swiss Science Foundation and by the EU project GLIMPSE (Global Implications of Arctic climate processes and feedbacks). Dr. E. Xoplaki was partially supported by the Fifth Framework Programme of the European Union (project SOAP). We also thank the two anonymous reviewers for their comments that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Casty.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casty, C., Handorf, D., Raible, C.C. et al. Recurrent climate winter regimes in reconstructed and modelled 500 hPa geopotential height fields over the North Atlantic/European sector 1659–1990. Climate Dynamics 24, 809–822 (2005). https://doi.org/10.1007/s00382-004-0496-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-004-0496-8

Keywords

Navigation