Skip to main content

Advertisement

Log in

Simulating the Holocene climate evolution at northern high latitudes using a coupled atmosphere-sea ice-ocean-vegetation model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The response of the climate at high northern latitudes to slowly changing external forcings was studied in a 9,000-year long simulation with the coupled atmosphere-sea ice-ocean-vegetation model ECBilt-CLIO-VECODE. Only long-term changes in insolation and atmospheric CO2 and CH4 content were prescribed. The experiment reveals an early optimum (9–8 kyr BP) in most regions, followed by a 1–3°C decrease in mean annual temperatures, a reduction in summer precipitation and an expansion of sea-ice cover. These results are in general agreement with proxy data. Over the continents, the timing of the largest temperature response in summer coincides with the maximum insolation difference, while over the oceans, the maximum response is delayed by a few months due to the thermal inertia of the oceans, placing the strongest cooling in the winter half year. Sea ice is involved in two positive feedbacks (ice-albedo and sea-ice insulation) that lead regionally to an amplification of the thermal response in our model (7°C cooling in Canadian Arctic). In some areas, the tundra-taiga feedback results in intensified cooling during summer, most notably in northern North America. The simulated sea-ice expansion leads in the Nordic Seas to less deep convection and local weakening of the overturning circulation, producing a maximum winter temperature reduction of 7°C. The enhanced interaction between sea ice and deep convection is accompanied by increasing interannual variability, including two marked decadal-scale cooling events. Deep convection intensifies in the Labrador Sea, keeping the overall strength of the thermohaline circulation stable throughout the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Alley RB, Mayewski PA, Sowers T, Stuiver M, Taylor KC, Clark PU (1997) Holocene climatic instability—a prominent, widespread event 8200 yr ago. Geology 25:483–486

    Article  Google Scholar 

  • Andersen C, Koç N, Jennings J, Andrews JT (2004) Nonuniform response of the major surface currents in the Nordic Seas to insolation forcing: implications for the Holocene climate variability. Paleoceanography 19:PA2003. DOI: 10.1029/2002PA000873

    Article  Google Scholar 

  • Andersson C, Risebrobakken B, Jansen E, Dahl SO (2003) Late Holocene surface ocean conditions of the Norwegian Sea (Vøring Plateau). Paleoceanography 18:1044. DOI: 10.1029/2001PA000654

    Google Scholar 

  • Andreev AA, Klimanov VA (2000) Quantitative Holocene climatic reconstruction from Arctic Russia. J Paleolimnol 24:81–91

    Article  Google Scholar 

  • Andreev AA, Manley WF, Ingolfsson O, Forman SL (2001) Environmental changes on Yugorski Peninsula, Kara Sea, Russia, during the last 12,8000 radiocarbon years. Global Planet Change 31:255–264

    Article  Google Scholar 

  • Barber DC, Dyke A, Hillaire-Marcel C, Jennings AE, Andrews JT, Kerwin MW, Bilodeau G, McNeely R, Southon J, Morehead MD, Gagnon J-M (1999) Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature 400:344–348

    Article  CAS  Google Scholar 

  • Bauch HA, Erlenkeuser H, Fahl K, Spielhagen RF, Weinelt MS, Andruleit H, Henrich R (1999) Evidence for a steeper Eemian than Holocene sea surface temperature gradient between Arctic and sub-Arctic regions. Palaeogeogr Palaeoclim Palaeoecol 145:95–117

    Article  Google Scholar 

  • Berger AL (1978) Long-term variations of daily insolation and Quaternary climatic changes. J Atmos Sci 35:2363–2367

    Article  Google Scholar 

  • Bigelow NH, Brubaker LB, Edwards ME, Harrison SP, Prentice IC, Anderson PM, Andreev AA, Bartlein PJ, Christensen TR, Cramer W, Kaplan JO, Lozhkin AV, Matveyeva NV, Murray DF, McGuire AD, Razzhivin VY, Ritchie JC, Smith B, Walker DA, Gajewski K, Wolf V, Holmqvist BH, Igarashi Y, Kremenetskii K, Paus A, Pisaric MFJ, Volkova VS (2003) Climate change and Arctic ecosystems: 1 Vegetation changes north of 55°N between the last glacial maximum, mid-Holocene, and present. J Geophys Res 108:8170. DOI: 10.1029/2002JD002558

    Article  Google Scholar 

  • Birks CJA, Koç N (2002) A high-resolution diatom record of late-Quaternary sea-surface temperatures and oceanographic conditions from the eastern Norwegian Sea. Boreas 31:323–344

    Article  Google Scholar 

  • Bonan GB, Chapin FS III, Thompson SL (1995) Boreal forest and tundra ecosystems as components of the climate system. Clim Change 29:145–167

    Google Scholar 

  • Bond GC, Kromer B, Beer J, Muscheler R, Evans MN, Showers W, Hoffmann S, Lotti-Bond R, Hajdas I, Bonani G (2001) Persistent solar influence on North Atlantic climate during the Holocene. Science 294:2130–2133

    Article  CAS  PubMed  Google Scholar 

  • Braconnot P, Marti O, Joussaume S, Leclainche Y (2000) Ocean feedback in response to 6 kyr BP insolation. J Clim 13:1537–1553

    Article  Google Scholar 

  • Bradley RS (1990) Holocene paleoclimatology of the Queen Elizabeth Islands, Canadian High Arctic. Quat Sci Rev 9:364–384

    Article  Google Scholar 

  • Brovkin V, Bendtsen J, Claussen M, Ganopolski A, Kubatzki C, Petoukhov V, Andreev A (2002) Carbon cycle, vegetation and climate dynamics in the Holocene: experiments with the CLIMBER-2 model. Global Biogeochem Cycle 16. DOI: 10.1029/2001GB001662

  • Brovkin V, Levis S, Loutre MF, Crucifix M, Claussen M, Ganopolski A, Kubatzki K, Petoukhov V (2003) Stability analysis of the climate-vegetation system in the northern high latitudes. Clim Change 57:119–138

    Article  CAS  Google Scholar 

  • Calov R, Ganopolski A, Petoukhov V, Claussen M, Greve R (2002) Large-scale instabilities of the Laurentide ice sheet simulated in a fully coupled climate-system model. Geophys Res Lett 29:2216

    Article  Google Scholar 

  • Campin J-M, Goosse H (1999) Parameterization of density-driven downsloping flow for a coarse-resolution ocean model in z-coordinate. Tellus 51A:412–430

    Google Scholar 

  • CAPE project members (2001) Holocene paleoclimate data from the Arctic: testing models of global climate change. Quat Sci Rev 20:1275–1287

    Article  Google Scholar 

  • Claussen M, Kubatzki C, Brovkin V, Ganopolski A, Hoelzmann P, Pachur HJ (1999) Simulation of an abrupt change in Saharan vegetation in the mid-Holocene. Geophys Res Lett 26:2037–2040

    Article  Google Scholar 

  • Claussen M, Mysak LA, Weaver AJ, Crucifix M, Fichefet T, Loutre MF, Alexeev VA, Berger A, Ganopolski A, Goosse H, Lohmann G, Lunkeit F, Mohkov F, Petoukhov V, Stone P, Wang Z, Weber SL (2002) Earth System models of intermediate complexity: closing the gap in the spectrum of climate system models. Clim Dyn 18:579–586

    Article  Google Scholar 

  • Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD, Kucharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob Change Biol 7:357–373

    Article  Google Scholar 

  • Crucifix M, Loutre MF, Tulkens P, Fichefet T, Berger A (2002) Climate evolution during the Holocene: a study with an Earth system model of intermediate complexity. Clim Dyn 19:43–60

    Article  Google Scholar 

  • Cubasch U, Meehl GA, Boer GJ, Stouffer RJ, Dix M, Noda A, Senior CA, Raper S, Yap KS (2001) Projections of future climate change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 525–582

    Google Scholar 

  • Dahl SO, Nesje A (1996) A new approach to calculating Holocene winter precipitation by combining glacier equilibrium-line altitudes and pine-tree limits: a case study from Hardangerjøkulen, central southern Norway. Holocene 6:381–398

    Google Scholar 

  • Deleersnijder E, Campin JM (1995) On the computation of the barotropic mode of a free-surface world ocean model. Ann Geophys 13:675–688

    Article  Google Scholar 

  • Duplessy JC, Ivanova E, Murdmaa I, Paterne M, Labeyrie L (2001) Holocene Paleoceanography of the northern Barents Sea and variations in the northward heat transport by the Atlantic Ocean. Boreas 30:2–16

    Article  Google Scholar 

  • Dyke AS, Savelle JM (2000) Holocene driftwood incursion to Southwestern Victoria Island, Canadian Arctic Archipelago, and its significance to Paleooceanography and Archaeology. Quat Res 54:113–120

    Article  Google Scholar 

  • Dyke AS, Savelle JM (2001) Holocene history of the Bering Sea Bowhead Whale (Balaena mysticetus) in its Beaufort Sea summer grounds off Southwestern Victoria Island, western Canadian Arctic. Quat Res 55:371–379

    Article  Google Scholar 

  • Fichefet T, Morales Maqueda MA (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102:12609–12646

    Article  Google Scholar 

  • Foley JA, Kutzbach JE, Coe MT, Levis S (1994) Feedbacks between climate and boreal forests during the Holocene epoch. Nature 371:52–54

    Article  Google Scholar 

  • Folland CK, Karl TR, Christy RA, Clarke RA, Gruza GV, Jouzel J, Oerlemans J, Salinger MJ, Wang S-W (2001) Observed climate variability and change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 99–181

    Google Scholar 

  • Gajewski K, Frappier M (2001) A Holocene lacustrine record of environmental change in northeastern Prince of Wales Island, Nunavut, Canada. Boreas 30:285–289

    Article  Google Scholar 

  • Ganopolski A, Kubatzki C, Claussen M, Brovkin V, Petoukhov V (1998) The influence of vegetation-atmosphere-ocean interaction on climate during the Mid-Holocene. Science 280:1916–1919

    Article  CAS  PubMed  Google Scholar 

  • Gent PR, McWilliams JC (1990) Isopycnal mixing in ocean general circulation models. J Phys Oceanogr 20:150–155

    Article  Google Scholar 

  • Goosse H, Fichefet T (1999) Importance of ice-ocean interactions for the global ocean circulation: a model study. J Geophys Res 104:23337–23355

    Article  Google Scholar 

  • Goosse H, Renssen H (2001) A two-phase response of the Southern Ocean to an increase in greenhouse gas concentrations. Geophys Res Lett 28:3469–3472

    Article  CAS  Google Scholar 

  • Goosse, H, Renssen H (2003) Simulating the evolution of the Arctic climate during the last millennium. In: Proceedings of 7th conference on polar meteorology and oceanography and joint symposium on high-latitude climate variations, American Meteorological Society, Hyannis, 12–16 May 2003, Extended Abstract 1.5, at http://ams.confex.com/ams/7POLAR/7POLARCLIM/abstracts/60763.htm

  • Goosse H, Renssen H (2004) Exciting natural modes of variability by solar and volcanic forcing: idealized and realistic experiments. Clim Dyn 23:153–163

    Article  Google Scholar 

  • Goosse H, Deleersnijder E, Fichefet T, England M (1999) Sensitivity of a global ocean-sea ice model to the parameterization of vertical mixing. J Geophys Res 104:13681–13695

    Article  Google Scholar 

  • Goosse H, Selten FM, Haarsma RJ, Opsteegh JD (2001) Decadal variability in high northern latitudes as simulated by an intermediate-complexity climate model. Annals Glaciol 33:525–532

    Google Scholar 

  • Goosse H, Selten FM, Haarsma RJ, Opsteegh JD (2002a) A mechanism of decadal variability of the sea ice volume of the Northern Hemisphere. Clim Dyn 19:61–83

    Article  Google Scholar 

  • Goosse H, Renssen H, Selten FM, Haarsma RJ, Opsteegh JD (2002b) Potential causes of abrupt climate events: a numerical study with a three-dimensional climate model. Geophys Res Lett 29:1860. DOI:10.1029/2002GL014993

    Article  Google Scholar 

  • Goosse H, Selten FM, Haarsma RJ, Opsteegh JD (2003) Large sea-ice volume anomalies simulated in a coupled climate model. Clim Dyn 20:523–536

    Google Scholar 

  • Goosse H, Masson-Delmotte V, Renssen H, Delmotte M, Fichefet T, Morgan V, van Ommen T, Khim BK, Stenni B (2004) A late medieval warm period in the Southern Ocean as a delayed response to external forcing? Geophys Res Lett 31:L06203. DOI: 10.1029/019140

    Article  Google Scholar 

  • Hammarlund D, Barnekow L, Birks HJB, Buchardt B, Edwards TWD (2002) Holocene changes in atmospheric circulation recorded in the oxygen-isotope stratigraphy of lacustrine carbonates from northern Sweden. Holocene 12:339–351

    Article  Google Scholar 

  • Harington CR (1975) A postglacial walrus (Odobenus rosmarus) from Bathurst Island, N.W.T. Can Field Nat 89:249–261

    Google Scholar 

  • Harvey LDD (1988) On the role of high latitude ice, snow and vegetation feedbacks in the climatic response to external forcing changes. Clim Change 13:191–224

    Article  Google Scholar 

  • Hewitt CD Mitchell JFB (1998) A fully coupled GCM simulation of the climate of the mid-Holocene. Geophys Res Lett 25:361–364

    Article  Google Scholar 

  • Hillaire-Marcel C, deVernal A, Bilodeau G, Weaver AJ (2001) Absence of deep-water formation in the Labrador Sea during the last interglacial period. Nature 410:1073–1077

    Article  CAS  PubMed  Google Scholar 

  • Holland MM, Bitz CM (2003) Polar amplification of climate change in coupled models. Clim Dyn 21:221–232

    Article  Google Scholar 

  • Johnsen SJ, Dahl-Jensen D, Gundestrup N, Steffensen JP, Clausen HB, Miller H, Masson-Delmotte V, Sveinbjörnsdottir AE, White J (2001) Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. J Quat Sci 16:299–307

    Article  Google Scholar 

  • Kaplan MR, Wolfe AP, Miller GH (2002) Holocene environmental variability in Southern Greenland inferred from Lake Sediments. Quat Res 58:149–159

    Article  Google Scholar 

  • Kaufman DS, Ager TA, Anderson NJ, Anderson PM, Andrews JT, Bartlein PJ, Brubaker LB, Coats LL, Cwynar LC, Duvall ML, Dyke AS, Edwards ME, Eisner WR, Gajewski K, Geirsdottir A, Hu FS, Kaufman DS, Ager TA, Anderson NJ, Anderson PM, Andrews JT, Bartlein PJ, Brubaker LB, Coats LL, Cwynar LC, Duvall ML, Dyke AS, Edwards ME, Eisner WR, Gajewski K, Geirsdottir A, Hu FS, Jennings AE, Kaplan MR, Kerwin MW, Lozhkin AV, MacDonald GM, Miller GH, Mock CJ, Oswald WW, Otto-Bliesner BL, Porinchu DF, Rühland K, Smol JP, Steig EJ, Wolfe BB (2004) Holocene thermal maximum in the western Arctic (0–180°W). Quat Sci Rev 23:529–560

    Article  Google Scholar 

  • Kerwin MW, Overpeck JT, Webb RS, DeVernal A, Rind DH, Healy RJ (1999) The role of oceanic forcing in mid-Holocene Northern Hemisphere climatic changes. Paleoceanography 14:200–210

    Article  Google Scholar 

  • Koç N, Jansen E, Haflidason H (1993) Paleoceanographic reconstructions of surface ocean conditions in the Greenland, Iceland and Norwegian Seas through the last 14 ka based on diatoms. Quat Sci Rev 12:115–140

    Article  Google Scholar 

  • Koç N, Jansen E (1994) Response of the high-latitude Northern Hemisphere to orbital climate forcing: evidence from the Nordic Seas. Geology 22:523–526

    Article  Google Scholar 

  • Koç, N, Jansen E, Hald M, Labeyrie L (1996) Late glacial-Holocene sea surface temperatures and gradients between the North Atlantic and the Norwegian Sea: implications for the Nordic heat pump. In: Andrews JT, Austin WEN, Bergsten H, Jennings AE (eds) Late quarternary palaeoceanography of the North Atlantic Margins, Geological Society Special Publication, vol 111. Geological Society, London, pp 177–185

  • Koerner RM, Fisher DA (1990) A record of Holocene summer climate from a Canadian high-Arctic ice core. Nature 343:630–631

    Article  Google Scholar 

  • Korhola A, Weckström J, Holmström L, Erästö P (2000) A quantitative Holocene climatic record from diatoms in Northern Fennoscandia. Quat Res 54:284–294

    Article  Google Scholar 

  • Kutzbach JE, Gallimore RG (1988) Sensitivity of a coupled atmosphere/mixed ocean model to changes in orbital forcing at 9000 years B.P. J Geophys Res 93:803–821

    Google Scholar 

  • Lauritzen SE, Lundberg J (1999) Calibration of the speleothem delta function: an absolute temperature record for the Holocene in northern Norway. Holocene 9:659–669

    Article  Google Scholar 

  • Levac E, de Vernal A, Blake W Jr (2001) Sea-surface conditions in northernmost Baffin Bay during the Holocene: palynological evidence. J Quat Sci 16:353–363

    Article  Google Scholar 

  • Licciardi JM, Clark PU, Jenson JW, Macayeal DR (1998) Deglaciation of a soft-bedded Laurentide Ice Sheet. Quat Sci Rev 17:427–448

    Article  Google Scholar 

  • Lubinski DJ, Forman SL, Miller GH (1999) Holocene glacier and climate fluctuations on Franz Josef Land, Arctic Russia, 80°N. Quat Sci Rev 18:85–108

    Article  Google Scholar 

  • MacDonald GM, Edwards TWD, Moser KA, Pienitz R, Smol JP (1993) Rapid response of treeline vegetation and lakes to past climate warming. Nature 361:243–246

    Article  Google Scholar 

  • MacDonald GM, Velichko AA, Kremenetski CV, Borisova OK, Goleva AA, Andreev AA, Cwynar LC, Riding RT, Forman SL, Edwards TWD, Aravena R, Hammarlund D, Szeics JM, Gattaulin VN (2000). Holocene treeline history and climate change across Northern Eurasia. Quat Res 53:302–311

    Article  Google Scholar 

  • Marchal O, Cacho I, Stocker TF, Grimalt JO, Cavo E, Martrat B, Shackleton N, Vautravers M, Cortijo E, Van Kreveld S, Anderson C, Koç N, Chapman M, Sbaffi L, Duplessy JC, Sarnthein M, Turon JL, Duprat J, Jansen E (2002) Apparent long-term cooling of the sea surface in the northeast Atlantic and Mediterranean during the Holocene. Quat Sci Rev 21:455–483

    Article  Google Scholar 

  • Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys Space Phys 20:851–875

    Google Scholar 

  • Mitchell JFB, Grahame NS, Needham KJ (1988) Climate simulations for 9000 years before present: seasonal variations and effects of the Laurentide Ice Sheet. J Geophys Res 93:8283–8303

    Google Scholar 

  • Mitchell JFB, Karoly DJ, Hegerl GC, Zwiers FW, Allen MR, Marengo J (2001) Detection of climate change and attribution of causes. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 695–738

    Google Scholar 

  • Naidina OD, Bauch HA (2001) A Holocene pollen record from the Laptev Sea shelf, northern Yakutia. Global Planet Change 31:141–153

    Article  Google Scholar 

  • Nesje A, Matthews JA, Dahl SO, Berrisford MS, Andersson C (2001) Holocene glacier fluctuations of Flatebreen and winter-precipitation changes in the Jostedalsbreen, western Norway, based on glaciolacustrine sediment records. Holocene 11:267–280

    Article  Google Scholar 

  • Opsteegh JD, Haarsma RJ, Selten FM, Kattenberg A (1998) ECBILT: a dynamic alternative to mixed boundary conditions in ocean models. Tellus 50A: 348–367

    Google Scholar 

  • Ovenden L (1988) Holocene proxy-climate data from the Canadian Arctic. Paper 88-2. Geol Survey Canada, Ottawa

    Google Scholar 

  • Peltier WR (1994) Ice age paleotopography. Science 265:195–201

    Google Scholar 

  • Prentice IC, Jolly D, BIOME 6000 participants (2000) Mid-Holocene and glacial-maximum vegetation geography of the northern continents and Africa. J Biogeogr 27:507–519

    Article  Google Scholar 

  • Rahmstorf S, Marotzke J, Willebrand J (1996) Stability of the thermohaline circulation. In: Krauss W (ed) The warm water sphere of the North Atlantic Ocean. Borntraeger, Stuttgart, pp 129–158

    Google Scholar 

  • Rasmussen TL, Bäckström D, Heinemeier J, Klitgaard-Kristensen D, Knutz PC, Kuijpers A, Lassen S, Thomsen E, Troelstra SR, van Weering TCE (2002) The Faroe-Shetland Gateway: Late Quaternary water mass exchange between the Nordic seas and the northeastern Atlantic. Marine Geol 188:165–192

    Article  CAS  Google Scholar 

  • Raynaud D, Barnola JM, Chappellaz J, Blunier T, Indermühle A, Stauffer B (2000) The ice record of greenhouse gases: a view in the context of future changes. Quat Sci Rev 19:9–17

    Article  Google Scholar 

  • Renssen H, Goosse H, Fichefet T, Campin J-M (2001) The 8.2 kyr BP event simulated by a global atmosphere–sea-ice–ocean model. Geophys Res Lett 28:567–570

    Article  Google Scholar 

  • Renssen H, Goosse H, Fichefet T (2002) Modeling the effect of freshwater pulses on the early Holocene climate: the influence of high frequency climate variability. Paleoceanography 17:1020. DOI: 10.1029/2001PA000649

    Article  Google Scholar 

  • Renssen H, Brovkin V, Fichefet T, Goosse H (2003a) Holocene climate instability during the termination of the African Humid Period. Geophys Res Lett 30:1184. DOI: 10.1029/2002GL016636

    Google Scholar 

  • Renssen H, Goosse H, Fichefet T (2003b) On the non-linear response of the ocean thermohaline circulation to global deforestation. Geophys Res Lett 30:1061. DOI:10.1029/2002GL016155

    Google Scholar 

  • Renssen H, Braconnot P, Tett SFB, von Storch H, Weber SL (2004) Recent developments in Holocene climate modelling. In: Battarbee RW, Gasse F, Stickley CE (eds) Past climate variability through Europe and Africa. Kluwer, Dordrecht, pp 495–513

  • Rossow WB, Walker AW, Beuschel DE, Roiter MD (1996) International satellite cloud climatology project (ISCCP) documentation of new cloud datasets. WMO/TD-No 737. World Meteorological Organisation, Geneva

    Google Scholar 

  • Ritchie JC, Cwynar LC, Spear RW (1983) Evidence from north-west Canada for an early Holocene Milankovitch thermal maximum. Nature 305:126–128

    Article  Google Scholar 

  • Salvigsen O, Forman SL, Miller GH (1992) Thermophilous molluscs on Svalbard during the Holocene and their paleoclimatic implications. Polar Res 11:1–10

    Google Scholar 

  • Seppä H, Hammarlund D (2000) Pollen-stratigraphical evidence of Holocene hydrological change in northern Fennoscandia supported by independent isotopic data. J Paleolimnol 24:69–79

    Article  Google Scholar 

  • Seppä H, Birks HJB (2001) July mean temperature and annual precipitation trends during the Holocene in the Fennoscandian tree-line area: pollen-based climate reconstructions. Holocene 11:527–539

    Article  Google Scholar 

  • Seppä H, Birks HJB (2002) Holocene climate reconstructions from the Fennoscandian tree-line area based on pollen data from Toskaljavri. Quat Res 57:191–199

    Article  Google Scholar 

  • Seppä H, Birks HH, Birks HJB (2002) Rapid changes during the Greenland stadial 1 (Younger Dryas) to early Holocene transition on the Norwegian Barents Sea coast. Boreas 31:215–225

    Article  Google Scholar 

  • Schaeffer M, Selten FM, Opsteegh JD, Goosse H (2002) Intrinsic limits to predictability of abrupt regional climate change in IPCC SRES scenarios. Geophys Res Lett 29:1767. DOI 10.1029/2002GL015254

    Article  Google Scholar 

  • Smith IR (2002) Diatom-based Holocene paleoenvironmental records from continental sites on northeastern Ellesmere Island, high Arctic, Canada. J Paleolimnol 27:9–28

    Article  Google Scholar 

  • Snyder JA, MacDonald GM, Forman SL, Tarasov GA, Mode WN (2000) Postglacial climate and vegetation history, north-central Kola Peninsula, Russia: pollen and diatom records from Lake Yarnyshnoe-3. Boreas 29:261–271

    Article  Google Scholar 

  • Solignac S, de Vernal A, Hillaire-Marcel C (2004) Holocene sea-surface conditions in the North Atlantic—contrasted trends and regimes in the western and eastern sectors (Labrador Sea vs. Iceland Basin). Quat Sci Rev 23:319–334

    Article  Google Scholar 

  • Stewart TG, England J (1983) Holocene sea-ice variations and paleoenvironmental change, northernmost Ellesmere Island, N.W.T. Canada. Arctic Alpine Res 15:1–17

    Google Scholar 

  • Stewart TG, England J (1986) An early Holocene Caribou antler from northern Ellesmere Island, Canadian Arctic archipelago. Boreas 15:25–31

    Google Scholar 

  • Stott PA, Tett SFB, Jones GS, Allen MR, Mitchell JFB, Jenkins GJ (2000) External control of twentieth century temperature variations by natural and anthropogenic forcings. Science 290:2133–2137

    Article  Google Scholar 

  • TEMPO members (1996) Potential role of vegetation feedback in the climate sensitivity of high-latitude regions: a case study at 6000 years BP. Global Biochem Cycle 10:727–736

    Article  Google Scholar 

  • Thompson DW, Wallace JM (1998) The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300

    Article  Google Scholar 

  • Tuenter E, Weber SL, Hilgen FJ, Lourens LJ (2004) The influence of precession and obliquity on the Atlantic/European winter climate. In: Tuenter E, Modeling orbital induced variations in circum-Mediterranean climate. PhD Thesis, Utrecht University

  • Vardy SR, Warner BG, Aravena R (1998) Holocene climate and development of a subarctic peatland near Inuvik, Northwest Territories, Canada. Clim Change 40:285–313

    Article  CAS  Google Scholar 

  • Voronina E, Polyak L, De Vernal A, Peyron O (2001) Holocene variations of sea-surface conditions in the southeastern Barents Sea, reconstructed from dinoflagellate cyst assemblages. J Quat Sci 16:717–726

    Article  Google Scholar 

  • Wang Y, Mysak L, Wang Z, Brovkin V (2004) The greening of the McGill Paleoclimate model. Part II: Millennial-scale climate changes. Clim Dyn (submitted)

    Google Scholar 

  • Weber SL (2001) The impact of orbital forcing on the climate of an intermediate-complexity coupled model. Global Planet Change 30:7–12

    Article  Google Scholar 

  • Weber SL, Oerlemans J (2003) Holocene glacier variability: three case studies using an intermediate complexity climate model. Holocene 13:353–363

    Article  Google Scholar 

  • Weber SL, Crowley TJ, van der Schrier G (2004) Solar irradiance forcing of centennial climate variability during the Holocene. Clim Dyn 24:539–553

    Google Scholar 

  • Werner M, Mikolajewicz U, Heimann M, Hoffmann G (2000) Borehole versus isotope temperatures on Greenland: seasonality does matter. Geophys Res Lett 27:723–726

    Article  Google Scholar 

  • Williams LD, Bradley RS (1985) Paleoclimatology of the Baffin Bay region. In: Andrews JT (ed) Quaternary environments: eastern Canadian Arctic, Baffin Bay and Western Greenland. Allen and Unwin, Boston, pp 741–772

    Google Scholar 

Download references

Acknowledgements

The useful comments of the two anonymous reviewers are gratefully acknowledged. HR is supported by the Netherlands Organization for Scientific Research. TF and HG are Research Associates at the Belgian National Fund for Scientific Research. This study was carried out as part of the Belgian Second Multiannual Scientific Support Plan for a Sustainable Development Policy (Belgian Federal Science Policy Office, contract EV/10/9A) and the European Research Program on Environment and Sustainable Development (European Commission, contract EVK2-2001-00263). J.M. Campin (MIT) is thanked for programming the coupling of VECODE to ECBilt and for model testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Renssen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renssen, H., Goosse, H., Fichefet, T. et al. Simulating the Holocene climate evolution at northern high latitudes using a coupled atmosphere-sea ice-ocean-vegetation model. Clim Dyn 24, 23–43 (2005). https://doi.org/10.1007/s00382-004-0485-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-004-0485-y

Keywords

Navigation