Skip to main content

Advertisement

Log in

Interstitial continuous infusion therapy in a malignant glioma model in rats

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Purpose

Local direct delivery of chemotherapeutic agents for the treatment of brain tumors is an area of focus in the development of new therapeutic paradigms. These techniques need improvement, especially in terms of drug retention in brain tissue.

Materials and methods

In this study, we used a rat glioma model to examine carboplatin distribution, as measured by platinum penetration, after delivery via interstitial continuous (i.c.) infusion. We also examined rat survival times in response to carboplatin and oxaliplatin. I.C. infusion, a modified version of convection-enhanced delivery (CED) for local drug delivery, uses low volume (1 μl per hour) continuous infusion directly into the tumor.

Results

I.C. infusion produced a nearly 360-fold higher concentration of platinum in tumor tissue and significantly prolonged rodent survival time compared to intraperitoneal (i.p.) infusion.

Conclusions

We showed i.c. infusion allows for circumvention of the blood–brain barrier, focused drug distribution, and sustained drug delivery. This method could be a promising strategy for treating brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wolff JE, Trilling T, Mölenkamp G, Egeler RM, Jürgens H (1999) Chemosensitivity of glioma cells in vitro: a meta analysis. J Cancer Res Clin Oncol 125:481–486

    Article  PubMed  CAS  Google Scholar 

  2. Chamberlain MC (2006) Treatment options for glioblastoma. Neurosurg Focus 20:E19

    Article  PubMed  Google Scholar 

  3. Kroll RA, Pagel MA, Muldoon LL, Roman-Goldstein S, Fiamengo SA, Neuwelt EA (1998) Improving drug delivery to intracerebral tumor and surrounding brain in a rodent model: comparison of osmotic versus bradykinin modification of the blood-brain and/or blood-tumor barriers. Neurosurgery 43:879–886

    Article  PubMed  CAS  Google Scholar 

  4. Groothuis DR (2000) The blood–brain and blood–tumor barriers: a review of strategies for increasing drug delivery. Neuro Oncol 2:45–59

    Article  PubMed  CAS  Google Scholar 

  5. Begley DJ (2004) Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther 104:29–45

    Article  PubMed  CAS  Google Scholar 

  6. Brem H, Mahaley MS Jr, Vick NA, Black KL, Schold SC Jr, Burger PC, Friedman AH, Ciric IS, Eller TW, Cozzens JW, Kenealy JN (1991) Interstitial chemotherapy with drug polymer implants for the treatment of recurrent gliomas. J Neurosurg 74:441–446

    PubMed  CAS  Google Scholar 

  7. Tomita T (1991) Interstitial chemotherapy for brain tumors: review. J Neurooncol 10:57–74

    Article  PubMed  CAS  Google Scholar 

  8. Lieberman DM, Laske DW, Morrison PF, Bankiewicz KS, Oldfield EH (1995) Convection-enhanced distribution of large molecules in gray matter during interstitial drug infusion. J Neurosurg 82:1021–1029

    PubMed  CAS  Google Scholar 

  9. Chen MY, Lonser RR, Morrison PF, Governale LS, Oldfield EH (1999) Variables affecting convection-enhanced delivery to the striatum: a systematic examination of rate of infusion, cannula size, infusate concentration, and tissue-cannula sealing time. J Neurosurg 90:315–320

    PubMed  CAS  Google Scholar 

  10. Khan A, Jallo GI, Liu YJ, Carson BS Sr, Guarnieri M (2005) Infusion rates and drug distribution in brain tumor models in rats. J Neurosurg 102(Suppl.):53–58

    PubMed  Google Scholar 

  11. Degen JW, Walbridge S, Vortmeyer AO, Oldfield EH, Lonser RR (2003) Safety and efficacy of convection-enhanced delivery of gemcitabine or carboplatin in a malignant glioma model in rats. J Neurosurg 99:893–898

    Article  PubMed  CAS  Google Scholar 

  12. Saito R, Bringas JR, Panner A, Tamas M, Pieper RO, Berger MS, Bankiewicz KS (2004) Convection-enhanced delivery of tumor necrosis factor-related apoptosis-inducing ligand with systemic administration of temozolomide prolongs survival in an intracranial glioblastoma xenograft model. Cancer Res 64:6858–6862

    Article  PubMed  CAS  Google Scholar 

  13. Lévi F, Metzger G, Massari C, Milano G (2000) Oxaliplatin: pharmacokinetics and chronopharmacological aspects. Clin Pharmacokinet 38:1–21

    Article  PubMed  Google Scholar 

  14. Jerremalm E, Hedeland M, Wallin I, Bondesson U, Ehrsson H (2004) Oxaliplatin degradation in the presence of chloride: identification and cytotoxicity of the monochloro monooxalato complex. Pharm Res 21:891–894

    Article  PubMed  CAS  Google Scholar 

  15. Rochard E, Barthes D, Courtois P (1994) Stability and compatibility study of carboplatin with three portable infusion pump reservoirs. Int J Pharm 101:257–262

    Article  CAS  Google Scholar 

  16. Kroin JS, Penn RD (1982) Intracerebral chemotherapy: chronic microinfusion of cisplatin. Neurosurgery 10:349–354

    Article  PubMed  CAS  Google Scholar 

  17. Chang MJ, Yu WD, Reyno LM, Modzelewski RA, Egorin MJ, Erkmen K, Vlock DR, Furmanski P, Johnson CS (1994) Potentiation by interleukin 1α of cisplatin and carboplatin antitumor activity: schedule-dependent and pharmacokinetic effects in the RIF-1 tumor model. Cancer Res 54:5380–5386

    PubMed  CAS  Google Scholar 

  18. Erkmen K, Egorin MJ, Reyno LM, Morgan R Jr, Doroshow JH (1995) Effects of storage on the binding of carboplatin to plasma. Cancer Chemother Pharmacol 35:254–256

    Article  PubMed  CAS  Google Scholar 

  19. Butowski NA, Sneed PK, Chang SM (2006) Diagnosis and treatment of recurrent high-grade astrocytoma. J Clin Oncol 24:1273–1280

    Article  PubMed  CAS  Google Scholar 

  20. Laws ER, Parney IF, Huang W, Anderson F, Morris AM, Asher A, Lillehei KO, Bernstein M, Brem H, Sloan A, Berger MS, Chang S, Glioma Outcomes Investigators (2003) Survival following surgery and prognostic factors for recently diagnosed malignant glioma: data from the Glioma Outcomes Project. J Neurosurg 99:467–473

    PubMed  Google Scholar 

  21. Sugiyama S, Yamashita Y, Kikuchi T, Saito R, Kumabe T, Tominaga T (2007) Safety and efficacy of convection-enhanced delivery of ACNU, a hydrophilic nitrosourea, in intracranial brain tumor. J Neurooncol 82:41–47

    Article  PubMed  CAS  Google Scholar 

  22. Doz F, Berens ME, Dougherty DV, Rosenblum ML (1991) Comparison of the cytotoxic activities of cisplatin and carboplatin against glioma cell lines at pharmacologically relevant drug exposures. J Neurooncol 11:27–35

    Article  PubMed  CAS  Google Scholar 

  23. Wang PP, Frazier J, Brem H (2002) Local drug delivery to the brain. Adv Drug Deliv Rev 54:987–1013

    Article  PubMed  CAS  Google Scholar 

  24. Kerbel RS, Kamen BA (2004) The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 4:423–436

    Article  PubMed  CAS  Google Scholar 

  25. Chen W, Lu DR (1999) Carboplatin-loaded PLGA microspheres for intracerebral injection: formulation and characterization. J Microencapsul 16:551–563

    Article  PubMed  CAS  Google Scholar 

  26. Carson BS Sr, Wu Q, Tyler B, Sukav L, Raychaudhuri R, DiMeco F, Clatterbuck RE, Olivi A, Guarnieri M (2002) New approach to tumor therapy for inoperable areas of the brain: chronic intraparenchymal drug delivery. J Neurooncol 60:151–158

    Article  PubMed  Google Scholar 

  27. Friesen C, Herr I, Krammer PH, Debatin KM (1996) Involvement of the CD95 (APO-1/FAS) receptor/ligand system in drug-induced apoptosis in leukemia cells. Nat Med 2:574–577

    Article  PubMed  CAS  Google Scholar 

  28. Finkel TH, Tudor-Williams G, Banda NK, Cotton MF, Curiel T, Monks C, Baba TW, Ruprecht RM, Kupfer A (1995) Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV- and SIV-infected lymph nodes. Nat Med. 1:129–134

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the Rory David Deutsch Foundation, the Neuro-Oncology Research Foundation of Children’s Memorial Hospital, Chicago, Illinois and the Dr. Ralph and Marian C. Falk Medical Research Trust, Chicago, Illinois. We acknowledge expert technical assistance provided by Christopher D. McCabe, M.S. and Julianne Holleran (Medicine and Pharmacology, University of Pittsburgh Cancer Institute, Pittsburgh), The Department of Pathology Laboratory and Medicine, Children’s Memorial Hospital, Chicago, Illinois, and the editorial assistance of Rishi Lulla, M.D. and Ms. Terrie Byrne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihide Kondo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tange, Y., Kondo, A., Egorin, M.J. et al. Interstitial continuous infusion therapy in a malignant glioma model in rats. Childs Nerv Syst 25, 655–662 (2009). https://doi.org/10.1007/s00381-008-0805-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-008-0805-3

Keywords

Navigation