Skip to main content
Log in

Association of serum levels of arachidonic acid and eicosapentaenoic acid with prevalence of major adverse cardiac events after acute myocardial infarction

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

We studied the association of serum levels of arachidonic acid (AA) and eicosapentaenoic acid (EPA) with the prevalence of major adverse cardiac events (MACE) after acute myocardial infarction (AMI). We measured serum AA and EPA on admission in 146 consecutive AMI patients. The primary clinical endpoint was occurrence of MACE, defined as cardiac death, occurrence of heart failure, reinfarction, recurrent angina pectoris, and requirement of coronary intervention. Common logarithmic transformed serum levels of AA (logAA) and EPA (logEPA) were used in the analyses. The optimum cutoff point of each fatty acid used to distribute patients into two groups for Kaplan–Meier analysis was determined by receiver operating characteristic curves analysis. MACE occurred in 40 patients (27.4%). Kaplan–Meier analysis disclosed that the group with a logAA above the cutoff point [145.3 μg/mL (logAA 2.162)] showed a higher prevalence of MACE than those with a logAA below the cutoff point (P < 0.01). Conversely, the prevalence of MACE was significantly higher in the group with a logEPA below the cutoff point [52.3 μg/mL (logEPA 1.719)] compared to the group with a logEPA above it (P < 0.01). Similar to logAA, logAA/logEPA showed significant differences in the MACE-free curve between the two groups (cutoff 1.301, P < 0.001). Cox proportional hazards regression analysis suggested that logAA, logEPA, and logAA/logEPA were independently associated with the prevalence of MACE. Although the present study included a limited number of patients with single-time point measurement, the results suggested an association of logAA, logEPA, and logAA/logEPA with the prevalence of MACE after AMI. The present study warrants further studies involving a large number of patients to confirm that the serum levels of these fatty acids and their ratios are predictors of MACE after AMI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Verschuren WM, Jacobs DR, Bloemberg BP, Kromhout D, Menotti A, Aravanis C, Blackburn H, Buzina R, Dontas AS, Fidanza F (1995) Serum total cholesterol and long-term coronary heart disease mortality in different cultures. Twenty-five-year follow-up of the seven countries study. JAMA 274:131–136

    Article  PubMed  CAS  Google Scholar 

  2. Stoll G, Bendszus M (2006) Inflammation and atherosclerosis: novel insights into plaque formation and destabilization. Stroke 37:1923–1932

    Article  PubMed  CAS  Google Scholar 

  3. Shishehbor MH, Zhang R, Medina H, Brennan ML, Brennan DM, Ellis SG, Topol EJ, Hazen SL (2006) Systemic elevations of free radical oxidation products of arachidonic acid are associated with angiographic evidence of coronary artery disease. Free Radic Biol Med 41:1678–1683

    Article  PubMed  CAS  Google Scholar 

  4. Kavsak PA, Ko DT, Newman AM, Palomaki GE, Lustig V, MacRae AR, Jaffe AS (2007) Risk stratification for heart failure and death in an acute coronary syndrome population using inflammatory cytokines and N-terminal pro-brain natriuretic peptide. Clin Chem 53:2112–2118

    Article  PubMed  CAS  Google Scholar 

  5. Tan J, Hua Q, Li J, Fan Z (2009) Prognostic value of interleukin-6 during a 3-year follow-up in patients with acute ST-segment elevation myocardial infarction. Heart Vessels 24:329–334

    Article  PubMed  Google Scholar 

  6. Jha HC, Prasad J, Mittal A (2008) High immunoglobulin A seropositivity for combined Chlamydia pneumoniae, Helicobacter pylori infection, and high-sensitivity C-reactive protein in coronary artery disease patients in India can serve as atherosclerotic marker. Heart Vessels 23:390–396

    Article  PubMed  Google Scholar 

  7. Gach O, Louis O, Chapelle JP, Vanbelle S, Pierard LA, Legrand V (2009) Baseline inflammation is not predictive of periprocedural troponin elevation after elective percutaneous coronary intervention. Heart Vessels 24:267–270

    Article  PubMed  Google Scholar 

  8. Simopoulos AP (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 56:365–379

    Article  PubMed  CAS  Google Scholar 

  9. Frelinger AL 3rd, Furman MI, Linden MD, Li Y, Fox ML, Barnard MR, Michelson AD (2006) Residual arachidonic acid-induced platelet activation via an adenosine diphosphate-dependent but cyclooxygenase-1- and cyclooxygenase-2-independent pathway: a 700-patient study of aspirin resistance. Circulation 113:2888–2896

    Article  PubMed  CAS  Google Scholar 

  10. Tretjakovs P, Kalnins U, Dabina I, Erglis A, Dinne I, Jurka A, Latkovskis G, Zvaigzne A, Pirags V (2003) Nitric oxide production and arachidonic acid metabolism in platelet membranes of coronary heart disease patients with and without diabetes. Med Princ Pract 12:10–16

    Article  PubMed  Google Scholar 

  11. von Schacky C (1987) Prophylaxis of atherosclerosis with marine omega-3 fatty acids. A comprehensive strategy. Ann Intern Med 107:890–899

    Google Scholar 

  12. Endres S, von Schacky C (1996) n-3 Polyunsaturated fatty acids and human cytokine synthesis. Curr Opin Lipidol 7:48–52

    Article  PubMed  CAS  Google Scholar 

  13. Endres S, Ghorbani R, Kelley VE, Georgilis K, Lonnemann G, van der Meer JW, Cannon JG, Rogers TS, Klempner MS, Weber PC (1989) The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells. N Engl J Med 320:265–271

    Article  PubMed  CAS  Google Scholar 

  14. Siscovick DS, Raghunathan TE, King I, Weinmann S, Wicklund KG, Albright J, Bovbjerg V, Arbogast P, Smith H, Kushi LH (1995) Dietary intake and cell membrane levels of long-chain n-3 polyunsaturated fatty acids and the risk of primary cardiac arrest. JAMA 274:1363–1367

    Article  PubMed  CAS  Google Scholar 

  15. Albert CM, Campos H, Stampfer MJ, Ridker PM, Manson JE, Willett WC, Ma J (2002) Blood levels of long-chain n-3 fatty acids and the risk of sudden death. N Engl J Med 346:1113–1118

    Article  PubMed  CAS  Google Scholar 

  16. Lee SH, Shin MJ, Kim JS, Ko YG, Kang SM, Choi D, Jang Y, Chung N, Shim WH, Cho SY, Manabe I, Ha JW (2009) Blood eicosapentaenoic acid and docosahexaenoic acid as predictors of all-cause mortality in patients with acute myocardial infarction — data from Infarction Prognosis Study (IPS) Registry. Circ J 73:2250–2257

    Article  PubMed  CAS  Google Scholar 

  17. World Medical Association Declaration of Helsinki (1997) Recommendations guiding physicians in biomedical research involving human subjects. Cardiovasc Res 35:2–3

    Google Scholar 

  18. Nakamura T, Azuma A, Kuribayashi T, Sugihara H, Okuda S, Nakagawa M (2003) Serum fatty acid levels, dietary style and coronary heart disease in three neighbouring areas in Japan: the Kumihama study. Br J Nutr 89:267–272

    Article  PubMed  CAS  Google Scholar 

  19. Schectman G, Patsches M, Sasse EA (1996) Variability in cholesterol measurements: comparison of calculated and direct LDL cholesterol determinations. Clin Chem 42:732–737

    PubMed  CAS  Google Scholar 

  20. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502

    PubMed  CAS  Google Scholar 

  21. Yli-Jama P, Meyer HE, Ringstad J, Pedersen JI (2002) Serum free fatty acid pattern and risk of myocardial infarction: a case–control study. J Intern Med 251:19–28

    Article  PubMed  CAS  Google Scholar 

  22. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  23. Hoshi M, Williams M, Kishimoto Y (1973) Esterification of fatty acids at room temperature by chloroform–methanolic HCl–cupric acetate. J Lipid Res 14:599–601

    PubMed  CAS  Google Scholar 

  24. Paantjens AW, Kwakkel-van Erp JM, van Ginkel WG, van Kessel DA, van den Bosch JM, van de Graaf EA, Otten HG (2008) Serum thymus and activation regulated chemokine levels post-lung transplantation as a predictor for the bronchiolitis obliterans syndrome. Clin Exp Immunol 154:202–208

    Article  PubMed  CAS  Google Scholar 

  25. Ueeda M, Doumei T, Takaya Y, Shinohata R, Katayama Y, Ohnishi N, Takaishi A, Miyoshi T, Hirohata S, Kusachi S (2008) Serum n-3 polyunsaturated fatty acid levels correlate with the extent of coronary plaques and calcifications in patients with acute myocardial infarction. Circ J 72:1836–1843

    Article  PubMed  CAS  Google Scholar 

  26. Metcalf RG, James MJ, Gibson RA, Edwards JR, Stubberfield J, Stuklis R, Roberts-Thomson K, Young GD, Cleland LG (2007) Effects of fish-oil supplementation on myocardial fatty acids in humans. Am J Clin Nutr 85:1222–1228

    PubMed  CAS  Google Scholar 

  27. Masson S, Latini R, Tacconi M, Bernasconi R (2007) Incorporation and washout of n-3 polyunsaturated fatty acids after diet supplementation in clinical studies. J Cardiovasc Med (Hagerstown) 8(Suppl 1):S4–S10

    Article  Google Scholar 

  28. Harris WS (2006) The omega-6/omega-3 ratio and cardiovascular disease risk: uses and abuses. Curr Atheroscler Rep 8:453–459

    Article  PubMed  CAS  Google Scholar 

  29. Wijendran V, Hayes KC (2004) Dietary n-6 and n-3 fatty acid balance and cardiovascular health. Annu Rev Nutr 24:597–615

    Article  PubMed  CAS  Google Scholar 

  30. Dwyer JH, Allayee H, Dwyer KM, Fan J, Wu H, Mar R, Lusis AJ, Mehrabian M (2004) Arachidonate 5-lipoxygenase promoter genotype, dietary arachidonic acid, and atherosclerosis. N Engl J Med 350:29–37

    Article  PubMed  CAS  Google Scholar 

  31. Beatty CH, Howard CF Jr, Hoskins MK, Herrington PT (1985) Metabolism of arachidonic acid by macaque platelets. Implications for studies on atherosclerosis. Atherosclerosis 55:1–13

    Article  PubMed  CAS  Google Scholar 

  32. Harris WS (1989) Fish oils and plasma lipid and lipoprotein metabolism in humans: a critical review. J Lipid Res 30:785–807

    PubMed  CAS  Google Scholar 

  33. Kondo T, Ogawa K, Satake T, Kitazawa M, Taki K, Sugiyama S, Ozawa T (1986) Plasma-free eicosapentaenoic acid/arachidonic acid ratio: a possible new coronary risk factor. Clin Cardiol 9:413–416

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shozo Kusachi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ueeda, M., Doumei, T., Takaya, Y. et al. Association of serum levels of arachidonic acid and eicosapentaenoic acid with prevalence of major adverse cardiac events after acute myocardial infarction. Heart Vessels 26, 145–152 (2011). https://doi.org/10.1007/s00380-010-0038-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-010-0038-8

Keywords

Navigation