Skip to main content
Log in

Effects of crop growth and development on land surface fluxes

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

In this study, the Crop Estimation through Resource and Environment Synthesis model (CERES3.0) was coupled into the Biosphere-Atmosphere Transfer Scheme (BATS), which is called BATS CERES, to represent interactions between the land surface and crop growth processes. The effects of crop growth and development on land surface processes were then studied based on numerical simulations using the land surface models. Six sensitivity experiments by BATS show that the land surface fluxes underwent substantial changes when the leaf area index was changed from 0 to 6 m2 m −2. Numerical experiments for Yucheng and Taoyuan stations reveal that the coupled model could capture not only the responses of crop growth and development to environmental conditions, but also the feedbacks to land surface processes. For quantitative evaluation of the effects of crop growth and development on surface fluxes in China, two numerical experiments were conducted over continental China: one by BATS CERES and one by the original BATS. Comparison of the two runs shows decreases of leaf area index and fractional vegetation cover when incorporating dynamic crops in land surface simulation, which lead to less canopy interception, vegetation transpiration, total evapotranspiration, top soil moisture, and more soil evaporation, surface runoff, and root zone soil moisture. These changes are accompanied by decreasing latent heat flux and increasing sensible heat flux in the cropland region. In addition, the comparison between the simulations and observations proved that incorporating the crop growth and development process into the land surface model could reduce the systematic biases of the simulated leaf area index and top soil moisture, hence improve the simulation of land surface fluxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Betts, R. A., P. M. Cox, S. E. Lee, and F. I. Woodward, 1997: Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature, 387, 796–800.

    Article  Google Scholar 

  • Chase, T. N., R. A. Pielke, T. G. F. Kittel, R. Nemani, and S. W. Running, 1996: The sensitivity of a general circulation model to global changes in leaf area index. J. Geophys. Res., 101, 7393–7408.

    Article  Google Scholar 

  • China Meteorological Data Sharing Service System, cited 2010: Dekad datasets of crop growth and development and soil moisture in China. [Available online from http://cdc.cma.gov.cn/shuju/index3.jsp?dsid=AGME AB2 CHN TEN&pageid=3url]

  • Ciais, P., P. P. Tans, M. Trolier, J. W. C. White, and R. J. Francey, 1995: A large northern hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2. Science, 269, 1098–1102.

    Article  Google Scholar 

  • Claussen, M., 1995: Modeling bio-geophysical feedback in the Sahel. Max-Planck-Instutut für Meteorologie, No. 163, 26pp. [Available from Max-Planck-Institut für Meteorologie, Bundestrasse 55, 20146 Hamburg, Germany]

  • Collatz, G. J., L. Bounoua, and P. J. Sellers, 1993: SiB: Documentation and Fortran code listing. Version 1, GSFC/NASA Tech. Note, 12pp.

  • Dan, L., J. J. Ji, and Y. P. Li, 2005: Climatic and biological simulations in a two-way coupled atmosphere-biosphere model (CABM). Global and Planetary Change, 47, 153–169.

    Article  Google Scholar 

  • Dickinson, R. E., 1984: Modelling evapotranspiration for three-dimensional global climate models. Climate Processes and Climate Sensitivity. Vol. 29, Geophys. Monogr. Ser., J. E. Hansen & T. Takahashi, Eds., Amer. Geophys. Union, 58–72.

  • Dickinson, R. E., J. Jager, W. M. Washington, and R. Wolski, 1981: Boundary subroutine for the NCAR global climate model. NCAR Tech. Note NCAR/TN-1731IA, 75pp.

  • Dickinson, R. E., A. Henderson-Sellers, P. J. Kennedy, and M. F. Wilson, 1986: Biosphere-Atmosphere Transfer Schemes (BATS) for the NCAR community climate model. NCAR/TN-275 1 STR, 69pp.

  • Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere Atmosphere Transfer Scheme (BATS) Version le as coupled to the NCAR Community Climate Model. NCAR Tech. Note NCAR/TN-3871STR, 72pp.

  • Dickinson, R. E., M. Shaikh, R. Bryant, and L. Graumlich, 1998: Interactive canopies for a climate model. J. Climate, 11, 2823–2836.

    Article  Google Scholar 

  • Fekete, B. M., C. J. Vorosmarty, and W. Grabs, 2000: Global composite runoff fields based on observed discharge and simulated water balance, Rep. 22, Global Runoff Data Cent., Koblenz, Germany. [Available at http://www.grdc.sr.unh.edu/html/paper/ReportUS.pdfurl]

    Google Scholar 

  • Foley, J. A., S. Levis, I. C. Prentice, D. Pollard, and S. L. Thompson, 1998: Coupling dynamic models of climate and vegetation. Global Change Biology, 4, 561–579.

    Article  Google Scholar 

  • Giorgi, F., M. R. Marinucci, and G. T. Bates, 1993a: Development of a second generation regional climate model (RegCM2). Part I: Boundary-layer and radiative transfer processes. Mon. Wea. Rev., 121, 2794–2813.

    Article  Google Scholar 

  • Giorgi, F., M. R. Marinucci, G. T. Bates, and G. De Canio, 1993b: Development of a second generation regional climate model (RegCM2). Part II. Convective processes and assimilation of lateral boundary conditions. Mon. Wea. Rev., 121, 2814–2832.

    Article  Google Scholar 

  • Jones, C. A., and J. R. Kiniry, Eds., 1986: CERES-Maize: A Simulation Model of Maize Growth and Development. Texas A&M University Press, 194pp.

  • Kiniry, J. R., and Coauthors, 1997: Evaluation of two maize models for nine U.S. locations. Agronomy Journal, 89, 421–426.

    Article  Google Scholar 

  • Kristensen, K. J., 1974: Actual evapotranspiration in relation to leaf area. Nordic Hydrology, 5, 173–182.

    Google Scholar 

  • Leff, B., N. Ramankutty, and J. A. Foley, 2004: Geographic distribution of major crops across the world. Global Biogeochemical Cycles, 18, GB1009, doi: 10.1029/2003GB002108.

    Article  Google Scholar 

  • Liu, X. H., and Coauthors, 1989: Cropping System Zoning. The People’s Republic of China National Agricultural Atlas, SinoMaps Press, Beijing, 92–93.

    Google Scholar 

  • Loveland, T. R., B. C. Reed, J. F. Brown, D.O. Ohlen, Z. Zhu, L. Yang, and J. W. Merchant, 2000: Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens., 21(6/7), 1303–1330.

    Article  Google Scholar 

  • Lu, L., and W. J. Shuttleworth, 2002: Incorporating NDVI-Derived LAI into the climate version of RAMS and its impact on regional climate. Journal of Hydrometeorology, 3, 347–362.

    Article  Google Scholar 

  • Lu, L., R.A. Pielke, G. E. Liston, W. J. Parton, D. Ojima, and M. Hartman, 2001: Implementation of a two-way interactive atmospheric and ecological model and its application to the central United States. J. Climate, 14, 900–919.

    Article  Google Scholar 

  • Osborne, T. M., D. M. Lawrence, A. J. Challinor, J. M. Slingo, and T. R. Wheeler, 2006: Development and assessment of a coupled crop-climate model. Global Change Biology, 13(1), 169–183.

    Article  Google Scholar 

  • Pal, J. S., and Coauthors, 2007: Regional climate modeling for the developing world: The ICTP RegCM3 and RegCNET. Bull. Amer. Meteor. Soc., 88, 1395–1409.

    Article  Google Scholar 

  • Pang, X. P., J. Letey, and L. Wu, 1997: Yield and nitrogen uptake prediction by CERES-Maize model under semiarid conditions. Soil Science Society of America Journal, 61, 254–256.

    Article  Google Scholar 

  • Qian T., A. Dai, K. E. Trenberth, and K. W. Oleson, 2006: Simulation of global land surface conditions from 1948 to 2004. Part I: Forcing data and evaluations. Journal of Hydrometeorology, 7, 953–975.

    Article  Google Scholar 

  • Sellers, P. J., J. A. Berry, G. J. Collatz, C. B. Field, and F. G. Hall, 1992: Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using enzyme kinetics-electron transport models of leaf physiology. Remote Sens. Environ., 42, 187–216.

    Article  Google Scholar 

  • Song, S., Z. B. Fu, L. Zhou, and H. J. Wang, 2003: Two-way simulations from RegCM2 coupling with SU-CROS in the Huang-Huai-Hai-Plain in east China. Acta Meteorologica Sinica, 61(6), 702–710. (in Chinese)

    Google Scholar 

  • Tian, X., A. Dai, D. Yang, and Z. Xie, 2007: Effects of precipitation-bias corrections on surface hydrology over northern latitudes. J. Geophys. Res., 112, D14101, doi: 10.029/2007JD008420.

    Article  Google Scholar 

  • Tsuji, G. Y., G. Hoogenboom, and P. K. Thornton, 1998: Understanding Options for Agricultural Production. Kluwer Academic Publishers, Dordrecht/Boston/London, 400pp.

    Google Scholar 

  • Tsuji, G. Y., G. Uehara, and S. Balas, Eds., 1994: DSSAT Version 3. University of Hawaii, 172pp.

  • Tsvetsinskaya, E. A., L. O. Mearns, and W. E. Easterling, 2001a: Investigating the effect of seasonal plant growth and development in three-dimensional atmospheric simulations. Part I: Simulation of surface fluxes over the growing season. J. Climate, 14, 692–709.

    Article  Google Scholar 

  • Tsvetsinskaya, E. A., L. O. Mearns, and W. E. Easterling, 2001b: Investigating the effect of seasonal plant growth and development in three-dimensional atmospheric simulations. Part II: Atmospheric response to crop growth and development. J. Climate, 14, 711–729.

    Article  Google Scholar 

  • Xie, Z. H., F. Yuan, Q. Y. Duan, J. Zheng, M. L. Liang, and F. Chen, 2007: Regional parameter estimation of the VIC land surface model: Methodology and application to river basins in China, Journal of Hydrometeorology, 8(3), 447–468, doi: 10.1175/JHM568.1.

    Article  Google Scholar 

  • Xiong, W., 2004: Simulation of main food crops production under future climate change scenarios in China. Ph.D. dissertation, China Agricultural University, 129pp. (in Chinese)

  • Xue, Y., M. J. Fennessy, and P. J. Sellers, 1996: Impact of vegetation properties on U.S. summer weather prediction. J. Geophys. Res., 101, 7419–7430.

    Article  Google Scholar 

  • Yan, H. M., J. Y. Liu, and M. K. Cao, 2005: Remotely sensed multiple cropping index variations in China during 1981–2000. Acta Geographica Sinica, 60(4), 559–566. (in Chinese)

    Google Scholar 

  • Yang, Z. L., R. E. Dickinson, A. Henderson-Sellers, and A. J. Pitman, 1995: Preliminary study of spin-up processes in land surface models with the first stage data of Project for Intercomparison of Land Surface Parameterization Schemes Phase 1(a). J. Geophys. Res., 100, 16553–16578.

    Article  Google Scholar 

  • Yao, F. M., Y. L. Xu, E. D. Lin, M. Yokozawa, and J. H. Zhang, 2007: Assessing the impacts of climate change on rice yields in the main rice areas of China. Climatic Change, 80, 395–409.

    Article  Google Scholar 

  • Yin, Z. F., 2005: An experimental validation of CERES-Wheat and Maize. M. S. thesis, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 133pp. (in Chinese)

  • Zhang, F. C., D. H. Wang, and B. J. Qiu, 1987: Agrephenological Altas of China. Since Press, Beijing, 202pp. (in Chinese)

    Google Scholar 

  • Zhang, W. J., T. J. Zhou, and R. C. Yu, 2008: Spatial distribution and temporal variation of soil moisture over China Part I: Multi-data intercomparison. Chinese J. Atmos. Sci., 32(3), 581–597. (in Chinese)

    Google Scholar 

  • Zou, J., and X. L. Xie, 2004: Effects of different water regime on growth and yield of paddy. Research of Agriculture Modernization, 25(3), 217–221. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Chen  (陈 锋).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, F., Xie, Z. Effects of crop growth and development on land surface fluxes. Adv. Atmos. Sci. 28, 927–944 (2011). https://doi.org/10.1007/s00376-010-0105-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-010-0105-1

Key words

Navigation