Skip to main content
Log in

Similarities in chemical composition of soil organic matter across a millennia-old paddy soil chronosequence as revealed by advanced solid-state NMR spectroscopy

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

This study examined the chemical composition of soil organic matter (SOM) along a 2,000-year paddy soil chronosequence in eastern China by use of advanced solid-state nuclear magnetic resonance (NMR) spectroscopy as well as Fourier transform infrared spectroscopy (FTIR), aiming to identify changes in the chemical composition of SOM over a millennium timescale. The results showed that soil organic carbon concentration in the surface soil reached a steady state after 100 years of rice (Oryza sativa L.)–wheat (Triticum sp.) cropping on coastal tidal flats. The 13C NMR spectra and fractions of structural groups or components of the whole SOM samples differed little along the chronosequence, suggesting a similar chemical composition in SOM samples regardless of the duration of rice cultivation. The FTIR spectral pattern and relative intensities of some resolved functional groups or components of whole SOM were also similar along the soil chronosequence. The similarities in chemical composition of SOM can be attributed to the rice–wheat cropping system, in which SOM has undergone ongoing turnover under periodical fresh plant material input and wet–dry cropping alternation, leading to a similar chemical composition of bulk SOM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bräuer T, Grootes PM, Nadeau MJ, Andersen N (2013) Downward carbon transport in a 2000-year rice paddy soil chronosequence traced by radiocarbon measurements. Nucl Instrum Meth Phys Res Sect B 294:584–587

    Article  Google Scholar 

  • Cao X, Olk DC, Chappell M, Cambardella CA, Miller LF, Mao J (2011) Solid-state NMR analysis of soil organic matter fractions from integrated physical–chemical extraction. Soil Sci Soc Am J 75:1374–1384

    Article  CAS  Google Scholar 

  • Chen L, Zhang G, Effland WR (2011) Soil characteristic response times and pedogenic thresholds during the 1000-year evolution of a paddy soil chronosequence. Soil Sci Soc Am J 75:1807–1820

    Article  CAS  Google Scholar 

  • Cheng Y, Yang L, Cao Z, Ci E, Yin S (2009) Chronosequential changes of selected pedogenic properties in paddy soils as compared with non-paddy soils. Geoderma 151:31–41

    Article  CAS  Google Scholar 

  • Ci E, Yang L, Cheng Y, Shi L, Yin S (2008) Effect of cultivation history on distribution of organic carbon and structure of humus in paddy soils (In Chinese). Acta Pedologica Sin 45:950–956

    Google Scholar 

  • Cui J, Liu C, Li Z, Wang L, Chen X, Ye Z, Fang C (2012) Long-term changes in topsoil chemical properties under centuries of cultivation after reclamation of coastal wetlands in the Yangtze Estuary, China. Soil Till Res 123:50–60

    Article  Google Scholar 

  • Dixon WT (1982) Spinning-sideband-free and spinning-sideband-only NMR spectra in spinning samples. J Chem Phys 77:1800–1809

    Article  CAS  Google Scholar 

  • Dungait JAJ, Hopkins DW, Gregory AS, Whitmore AP (2012) Soil organic matter turnover is governed by accessibility not recalcitrance. Global Chang Biol 18:1781–1796

    Article  Google Scholar 

  • Fang X, Chua T, Schmidt-Rohr K, Thompson ML (2010) Quantitative 13C NMR of whole and fractionated Iowa Mollisols for assessment of organic matter composition. Geochim Cosmochim Acta 74:584–598

    Article  CAS  Google Scholar 

  • Fontaine S, Barot S, Barre P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–280

    Article  CAS  PubMed  Google Scholar 

  • Harberhauer G, Gerzabek MH (1999) Drift and transmission FTIR spectroscopy of forest soils: an approach to determine decomposition processes of forest litter. Vib Spectrosc 19:413–417

    Article  Google Scholar 

  • Hao R, Li Z, Che Y (2011) Differences in organic C mineralization between aerobic and submerged conditions in paddy soils of southern Jiangsu Province, China. Agric Sci China 10:1410–1418

    Article  CAS  Google Scholar 

  • Haygarth PM, Ritz K (2009) The future of soils and land use in the UK: Soil systems for the provision of land-based ecosystem services. Land Use Policy 26S:S187–S197

    Article  Google Scholar 

  • He Z, Honeycutt W, Zhang H (2011) Elemental and Fourier transform-infrared spectroscopic analysis of water- and pyrophosphate-extracted soil organic matter. Soil Sci 176:183–189

    Article  CAS  Google Scholar 

  • Huang S, Sun Y, Zhang W (2012) Changes in soil organic carbon stocks as affected by cropping systems and cropping duration in China’s paddy fields: a meta-analysis. Clim Chang 112:847–858

    Article  CAS  Google Scholar 

  • Huang M, Jiang L, Zou Y, Xu S, Deng G (2013) Changes in soil microbial properties with no-tillage in Chinese cropping systems. Biol Fertil Soils 49:373–377

    Article  Google Scholar 

  • Huggett RJ (1998) Soil chronosequences, soil development, and soil evolution: a critical review. Catena 32:155–172

    Article  Google Scholar 

  • Kalbitz K, Kaiser K, Fiedler S, Kolbl A, Amelung W, Brauer T, Cao Z, Don A, Grootes P, Jahn R, Schwark L, Vogelsang V, Wissing L, Kogel-Knabner I (2013) The carbon count of 2000 years of rice cultivation. Glob Chang Biol 19:1107–1113

    Article  PubMed  Google Scholar 

  • Kelleher BP, Simpson AJ (2006) Humic substances in soils: are they really chemically distinct? Environ Sci Technol 40:4605–4611

    Article  CAS  PubMed  Google Scholar 

  • Kögel-Knabner I (1997) 13C and 15N NMR spectroscopy as a tool in soil organic matter studies. Geoderma 80:243–270

    Article  Google Scholar 

  • Kögel-Knabner I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34:139–162

    Article  Google Scholar 

  • Kögel-Knabner I, Amelung W, Cao Z (2010) Biogeochemistry of paddy soils. Geoderma 157:1–14

    Article  Google Scholar 

  • Lal R (2009) Challenges and opportunities in soil organic matter research. Eur J Soil Sci 60:158–169

    Article  CAS  Google Scholar 

  • Lehmann J, Solomon D (2010) Organic carbon chemistry in soils observed by synchrotron-based spectroscopy. In: Singh B, Grafe M (eds) Development in Soil Science, vol 34. Elsevier, The Netherlands, pp 289–312

    Google Scholar 

  • Li Z, Zhang T, Li D, Velde B, Han F (2005) Changes in soil properties of paddy fields across a cultivation chronosequence in subtropical China. Pedosphere 15:110–119

    Google Scholar 

  • Mahieu N, Olk DC, Randall EW (2002) Multinuclear magnetic resonance analysis of two humic acid fractions from lowland rice soils. J Environ Qual 31:421–430

    Article  CAS  PubMed  Google Scholar 

  • Mao J, Chen N, Cao X (2011) Characterization of humic substances by advanced solid state NMR spectroscopy: demonstration of a systematic approach. Org Geochem 42:891–902

    Article  CAS  Google Scholar 

  • Mao J, Schmidt-Rohr K (2004) Separation of aromatic carbon 13C NMR signals from di-oxygenated alkyl bands by a chemical-shift-anisotropy filter. Solid State Nucl Magn 26:36–45

    Article  CAS  Google Scholar 

  • Mikutta R, Kleber M, Margaret S, Torn MS, Jahn R (2006) Stabilization of soil organic matter: association with minerals or chemical recalcitrance? Biogeochemistry 77:25–56

    Article  CAS  Google Scholar 

  • Montanarella L, Vargas R (2012) Global governance of soil resources as a necessary condition for sustainable development. Curr Opin Environ Sustain 4:1–6

    Article  Google Scholar 

  • Mueller-Niggemann C, Bannert A, Schloter M, Lehndorff E, Schwark L (2012) Intra- versus inter-site macroscale variation in biogeochemical properties along a paddy soil chronosequence. Biogeosciences 9:1237–1251

    Article  CAS  Google Scholar 

  • Nelson PN, Baldock JA (2005) Estimating the molecular composition of a diverse range of natural organic materials from solid-state 13C NMR and elemental analyses. Biogeochemistry 72:1–34

    Article  CAS  Google Scholar 

  • Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In: Sparks DL et al. Ed. Methods of soil analysis: part 3, chemical methods. SSSA Book Series, vol. 5. Soil Sci. Soc. Am, Madison, pp. 961–1010

  • Olk DC, Cassman KG, Randall EW, Kinchesh P, Sanger LJ, Anderson JM (1996) Changes in chemical properties of organic matter with intensified rice cropping in tropical lowland soil. Eur J Soil Sci 47:293–303

    Article  CAS  Google Scholar 

  • Olk DC, Dancel MC, Moscoso E, Jimenez RR, Dayrit FM (2002) Accumulation of lignin residues in organic matter fractions of lowland rice soils: a pyrolysis-GC-MS study. Soil Sci 167:590–606

    Article  CAS  Google Scholar 

  • Pampolino MF, Laureles EV, Gines HC, Buresh RJ (2008) Soil carbon and nitrogen changes in long-term continuous lowland rice cropping. Soil Sci Soc Am J 72:798–807

    Article  CAS  Google Scholar 

  • Rasche F, Cadisch G (2013) The molecular microbial perspective of organic matter turnover and nutrient cycling in tropical agroecosystems—what do we know? Biol Fertil Soils 49:251–262

    Article  Google Scholar 

  • Sahrawat KL (2004) Organic matter accumulation in submerged soils. Adv Agron 81:169–201

    Article  CAS  Google Scholar 

  • Sahrawat KL (2012) Soil fertility in flooded and non-flooded irrigated rice systems. Arch Agron Soil Sci 58:423–436

    Article  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    Article  CAS  PubMed  Google Scholar 

  • Shen M, Yang L, Yao Y, Wu D, Wang J, Guo R, Yin S (2007) Long-term effects of fertilizer managements on crop yields and organic carbon storage of a typical rice–wheat agroecosystem of China. Biol Fertil Soils 44:187–200

    Article  Google Scholar 

  • Skjemstad JO, Clarke P, Taylor JA, Oades JM, Newman RH (1994) The removal of magnetic materials from surface soils. A solid state 13C CPMAS NMR study. Aust J Soil Res 32:1215–1229

    Article  CAS  Google Scholar 

  • Sollins P, Homann P, Caldwell BA (1996) Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma 74:65–105

    Article  Google Scholar 

  • Stevenson F (1994) Humus chemistry: genesis, composition, reactions. Wiley, New York

    Google Scholar 

  • Thevenot M, Dignac M, Mendez-Millan M, Bahri H, Hatté C, Bardoux G, Rumpel C (2013) Ligno-aliphatic complexes in soils revealed by an isolation procedure: implication for lignin fate. Biol Fertil Soils 49:517–526

    Article  CAS  Google Scholar 

  • Walker LR, Wardle DA, Bardgett RD, Clarkson BD (2010) The use of chronosequences in studies of ecological succession and soil development. J Ecol 98:725–736

    Article  Google Scholar 

  • Wassmann R, Neue HU, Ladha JK, Aulakh MS (2004) Mitigating greenhouse gas emissions from rice–wheat cropping systems in Asia. Environ Dev Sustain 6:65–90

    Article  Google Scholar 

  • Wissing L, Kölbl A, Häusler W, Schad P, Cao Z, Kögel-Knabner I (2013) Management-induced organic carbon accumulation in paddy soils: the role of organo-mineral associations. Soil Tillage Res 126:60–71

    Article  Google Scholar 

  • Wissing L, Kölbl A, Vogelsang V, Fu JR, Cao Z, Kögel-Knabner I (2011) Organic carbon accumulation in a 2000-year chronosequence of paddy soil evolution. Catena 87:376–385

    Article  CAS  Google Scholar 

  • Zaccone C, Sanei H, Outridge PM, Miano TM (2011) Studying the humification degree and evolution of peat down a Holocene bog profile (Inuvik, NW Canada): a petrological and chemical perspective. Org Geochem 42:399–408

    Article  CAS  Google Scholar 

  • Zech W et al (1997) Factors controlling humification and mineralization of soil organic matter in the tropics. Geoderma 79:117–161

    Article  CAS  Google Scholar 

  • Zhang M, He Z (2004) Long-term changes in organic carbon and nutrients of an Ultisol under rice cropping in southeast China. Geoderma 118:167–179

    Google Scholar 

  • Zong Y, Chen Z, Innes JB, Chen C, Wang Z, Wang H (2007) Fire and flood management of coastal swamp enabled first rice paddy cultivation in east China. Nature 449:459–462

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the National Science Foundation (EAR-1226323) for partial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingdong Mao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Z., Cao, X., Schmidt-Rohr, K. et al. Similarities in chemical composition of soil organic matter across a millennia-old paddy soil chronosequence as revealed by advanced solid-state NMR spectroscopy. Biol Fertil Soils 50, 571–581 (2014). https://doi.org/10.1007/s00374-013-0875-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-013-0875-6

Keywords

Navigation