Skip to main content
Log in

Functional genomics analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence

  • Review
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

In soil, some specific bacterial populations, called plant growth-promoting rhizobacteria are able to promote plant growth and/or reduce the incidence of soil-borne diseases. Rhizosphere competence is an important prerequisite for the efficacy of these biocontrol strains. Therefore, over decades, multiple approaches have been combined to understand the molecular basis of bacterial traits involved in rhizosphere competence. This review addresses the bacterial genes expressed during bacterial–plant interactions in the rhizosphere of different plant species. The distribution of these key genes in natural populations of rhizobacteria is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbas A, Morrissey JP, Marquez PC, Sheehan MM, Delany IR, O'Gara F (2002) Characterization of interactions between the transcriptional repressor PhlF and its binding site at the phlA promoter in Pseudomonas fluorescens F113. J Bacteriol 184:3008–3016

    Article  PubMed  CAS  Google Scholar 

  • Abbas A, McGuire JE, Crowley D, Baysse C, Dow M, O'Gara F (2004) The putative permease PhIE of Pseudomonas fluorescens F113 has a role in 2,4-diacetylphloroglucinol resistance and in general stress tolerance. Microbiology-SGM 150:2443–2450

    Article  CAS  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in-situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    PubMed  CAS  Google Scholar 

  • Attila C, Ueda A, Cirillo SLG, Cirillo JD, Chen W, Wood TK (2008) Pseudomonas aeruginosa PAO1 virulence factors and poplar tree response in the rhizosphere. Microbial Biotech 1:17–29

    CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Ann Rev Plant Biol 57:233–266

    Article  CAS  Google Scholar 

  • Banerji S, Flieger A (2004) Patatin-like proteins: a new family of lipolytic enzymes present in bacteria? Microbiology-SGM 150:522–525

    Article  CAS  Google Scholar 

  • Barr M, East AK, Leonard M, Mauchline TH, Poole PS (2008) In vivo expression technology (IVET) selection of genes of Rhizobium leguminosarum biovar viciae A34 expressed in the rhizosphere. FEMS Microbiol Lett 282:219–227

    Article  PubMed  CAS  Google Scholar 

  • Barret M, Frey-Klett P, Boutin M, Guillerm-Erckelboudt AY, Martin F, Guillot L, Sarniguet A (2009a) The plant pathogenic fungus Gaeumannomyces graminis var. tritici improves bacterial growth and triggers early gene regulations in the biocontrol strain Pseudomonas fluorescens Pf29Arp. New Phytol 181:435–447

    Article  PubMed  CAS  Google Scholar 

  • Barret M, Frey-Klett P, Guillerm-Erckelboudt AY, Boutin M, Guernec G, Sarniguet A (2009b) Effect of wheat roots infected with the pathogenic fungus Gaeumannomyces graminis var. tritici on gene expression of the biocontrol bacterium Pseudomonas fluorescens Pf29Arp. Mol Plant Microbe Interact 22:1611–1623

    Article  PubMed  CAS  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    Article  PubMed  CAS  Google Scholar 

  • Bleves S, Viarre V, Salacha R, Michel GPF, Filloux A, Voulhoux R (2010) Protein secretion systems in Pseudomonas aeruginosa: a wealth of pathogenic weapons. Int J Med Microbiol 300:534–543

    Article  PubMed  CAS  Google Scholar 

  • Brazil GM, Kenefick L, Callanan M, Haro A, Delorenzo V, Dowling DN, Ogara F (1995) Construction of a rhizosphere pseudomonad with potential to degrade polychlorinated-biphenyls and detection of bph gene expression in the rhizosphere. Appl Environ Microbiol 61:1946–1952

    PubMed  CAS  Google Scholar 

  • Browne P, Rice O, Miller SH, Burke J, Dowling DN, Morrissey JP, O'Gara F (2009) Superior inorganic phosphate solubilization is linked to phylogeny within the Pseudomonas fluorescens complex. Appl Soil Ecol 43:131–138

    Article  Google Scholar 

  • Browne P, Barret M, O'Gara F, Morrissey JP (2010) Computational prediction of the Crc regulon identifies genus-wide and species-specific targets of catabolite repression control in Pseudomonas bacteria. BMC Microbiol 10:300

    Article  PubMed  CAS  Google Scholar 

  • Buchan A, Crombie B, Alexandre GM (2010) Temporal dynamics and genetic diversity of chemotactic-competent microbial populations in the rhizosphere. Environ Microbiol 12:3171–3184

    Article  PubMed  CAS  Google Scholar 

  • Buell CR, Anderson AJ (1992) Genetic analysis of the aggA locus involved in agglutination and adherence of Pseudomonas putida, a beneficial fluorescent pseudomonad. Mol Plant Microbe Interact 5:154–162

    Article  PubMed  CAS  Google Scholar 

  • Capdevila S, Martinez-Granero FM, Sanchez-Contreras M, Rivilla R, Martin M (2004) Analysis of Pseudomonas fluorescens F113 genes implicated in flagellar filament synthesis and their role in competitive root colonization. Microbiology-SGM 150:3889–3897

    Article  CAS  Google Scholar 

  • Cheng ZY, Duan J, Hao YA, McConkey BJ, Glick BR (2009) Identification of bacterial proteins mediating the interactions between Pseudomonas putida UW4 and Brassica napus (Canola). Mol Plant Microbe Interact 22:686–694

    Article  PubMed  CAS  Google Scholar 

  • Chin-A-Woeng TFC, Bloemberg GV, van der Bij AJ, van der Drift K, Schripsema J, Kroon B, Scheffer RJ, Keel C, Bakker P, Tichy HV, de Bruijn FJ, Thomas-Oates JE, Lugtenberg BJJ (1998) Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant Microbe Interact 11:1069–1077

    Article  CAS  Google Scholar 

  • Cornelis GR (2010) The type III secretion injectisome, a complex nanomachine for intracellular 'toxin' delivery. Biol Chem 391:745–751

    Article  PubMed  CAS  Google Scholar 

  • Cusano AM, Burlinson P, Deveau A, Vion P, Uroz S, Preston GM, Frey-Klett P (2010) Pseudomonas fluorescens BBc6R8 type III secretion mutants no longer promote ectomycorrhizal symbiosis. Environ Microbiol Rep 3:203–210

    Article  CAS  Google Scholar 

  • de Ridder-Duine AS, Kowalchuk GA, Gunnewiek P, Smant W, van Veen JA, de Boer W (2005) Rhizosphere bacterial community composition in natural stands of Carex arenaria (sand sedge) is determined by bulk soil community composition. Soil Biol Biochem 37:349–357

    Article  CAS  Google Scholar 

  • de Weert S, Vermeiren H, Mulders IHM, Kuiper I, Hendrickx N, Bloemberg GV, Vanderleyden J, De Mot R, Lugtenberg BJJ (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microbe Interact 15:1173–1180

    Article  PubMed  Google Scholar 

  • de Weger LA, Vandervlugt CIM, Wijfjes AHM, Bakker P, Schippers B, Lugtenberg B (1987) Flagella of a plant-growth-stimulating Pseudomonas fluorescens strain are required for colonization of potato roots. J Bacteriol 169:2769–2773

    PubMed  Google Scholar 

  • de Werra P, Baehler E, Huser A, Keel C, Maurhofer M (2008) Detection of plant-modulated alterations in antifungal gene expression in Pseudomonas fluorescens CHA0 on roots by flow cytometry. Appl Environ Microbiol 74:1339–1349

    Article  PubMed  CAS  Google Scholar 

  • Dekkers LC, Bloemendaal CJP, de Weger LA, Wijffelman CA, Spaink HP, Lugtenberg BJJ (1998) A two-component system plays an important role in the root-colonizing ability of Pseudomonas fluorescens strain WCS365. Mol Plant Microbe Interact 11:45–56

    Article  PubMed  CAS  Google Scholar 

  • Delany IR, Walsh UF, Ross I, Fenton AM, Corkery DM, O'Gara F (2001) Enhancing the biocontrol efficacy of Pseudomonas fluorescens F113 by altering the regulation and production of 2,4-diacetylphloroglucinol—improved Pseudomonas biocontrol inoculants. Plant Soil 232:195–205

    Article  CAS  Google Scholar 

  • Delepelaire P (2004) Type I secretion in gram-negative bacteria. BBA-Mol Cell Res 1694:149–161

    CAS  Google Scholar 

  • Denison RF, Bledsoe C, Kahn M, O'Gara F, Simms EL, Thomashow LS (2003) Cooperation in the rhizosphere and the "free rider" problem. Ecology 84:838–845

    Article  Google Scholar 

  • Dennis PG, Miller AJ, Hirsch PR (2010) Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol 72:313–327

    Article  PubMed  CAS  Google Scholar 

  • Espinosa-Urgel M, Salido A, Ramos JL (2000) Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds. J Bacteriol 182:2363–2369

    Article  PubMed  CAS  Google Scholar 

  • Fedi S, Tola E, MoenneLoccoz Y, Dowling DN, Smith LM, Ogara F (1997) Evidence for signaling between the phytopathogenic fungus Pythium ultimum and Pseudomonas fluorescens F113: P. ultimum represses the expression of genes in P. fluorescens F113, resulting in altered ecological fitness. Appl Environ Microbiol 63:4261–4266

    PubMed  CAS  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103:626–631

    Article  PubMed  CAS  Google Scholar 

  • Fierer N, Breitbart M, Nulton J, Salamon P, Lozupone C, Jones R, Robeson M, Edwards RA, Felts B, Rayhawk S, Knight R, Rohwer F, Jackson RB (2007) Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of Bacteria, Archaea, Fungi, and Viruses in soil. Appl Environ Microbiol 73:7059–7066

    Article  PubMed  CAS  Google Scholar 

  • Gal M, Preston GM, Massey RC, Spiers AJ, Rainey PB (2003) Genes encoding a cellulosic polymer contribute toward the ecological success of Pseudomonas fluorescens SBW25 on plant surfaces. Mol Ecol 12:3109–3121

    Article  PubMed  CAS  Google Scholar 

  • Garbeva P, Silby MW, Raaijmakers JM, Levy SB, Boer WD (2011) Transcriptional and antagonistic responses of Pseudomonas fluorescens Pf0-1 to phylogenetically different bacterial competitors. ISME J 5:973–985

    Article  PubMed  CAS  Google Scholar 

  • Georgakopoulos DG, Hendson M, Panopoulos NJ, Schroth MN (1994) Analysis of expression of a phenazine biosynthesis locus of Pseudomonas aureofaciens PGS12 on seeds with a mutant carrying a phenazine biosynthesis locus ice nucleation reporter gene fusion. Appl Environ Microbiol 60:4573–4579

    PubMed  CAS  Google Scholar 

  • Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Algire MA, Benders GA, Montague MG, Ma L, Moodie MM, Merryman C, Vashee S, Krishnakumar R, Assad-Garcia N, Andrews-Pfannkoch C, Denisova EA, Young L, Qi ZQ, Segall-Shapiro TH, Calvey CH, Parmar PP, Hutchison CA, Smith HO, Venter JC (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329:52–56

    Article  PubMed  CAS  Google Scholar 

  • Giddens SR, Jackson RW, Moon CD, Jacobs MA, Zhang XX, Gehrig SM, Rainey PB (2007) Mutational activation of niche-specific genes provides insight into regulatory networks and bacterial function in a complex environment. Proc Natl Acad Sci USA 104:18247–18252

    Article  PubMed  CAS  Google Scholar 

  • Gophna U, Ron EZ, Graur D (2003) Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events. Gene 312:151–163

    Article  PubMed  CAS  Google Scholar 

  • Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  PubMed  CAS  Google Scholar 

  • Hassan KA, Johnson A, Shaffer BT, Ren QH, Kidarsa TA, Elbourne LDH, Hartney S, Duboy R, Goebel NC, Zabriskie TM, Paulsen IT, Loper JE (2010) Inactivation of the GacA response regulator in Pseudomonas fluorescens Pf-5 has far-reaching transcriptomic consequences. Environ Microbiol 12:899–915

    Article  PubMed  CAS  Google Scholar 

  • Hinsa SM, Espinosa-Urgel M, Ramos JL, O'Toole GA (2003) Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Mol Microbiol 49:905–918

    Article  PubMed  CAS  Google Scholar 

  • Howie WJ, Suslow TV (1991) Role of antibiotic biosynthesis in the inhibition of Pythium ultimum in the cotton spermosphere and rhizosphere by Pseudomonas fluorescens. Mol Plant Microbe Interact 4:393–399

    Article  CAS  Google Scholar 

  • Hugenholtz P, Tyson GW (2008) Microbiology—metagenomics. Nature 455:481–483

    Article  PubMed  CAS  Google Scholar 

  • Jackson RW, Preston GM, Rainey PB (2005) Genetic characterization of Pseudomonas fluorescens SBW25 rsp gene expression in the phytosphere and in vitro. J Bacteriol 187:8477–8488

    Article  PubMed  CAS  Google Scholar 

  • Jamali F, Sharifi-Tehrani A, Lutz M, Maurhofer M (2009) Influence of host plant genotype, presence of a pathogen, and coinoculation with Pseudomonas fluorescens strains on the rhizosphere expression of hydrogen cyanide- and 2,4-diacetylphloroglucinol biosynthetic genes in P. fluorescens biocontrol strain CHA0. Microb Ecol 57:267–275

    Article  PubMed  Google Scholar 

  • Jong WSP, ten Hagen-Jongman CM, Ruijter E, Orru RVA, Genevaux P, Luirink J (2010) YidC is involved in the biogenesis of the secreted autotransporter hemoglobin protease. J Biol Chem 285:39682–39690

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338

    Article  PubMed  CAS  Google Scholar 

  • Kida Y, Higashimoto Y, Inoue H, Shimizu T, Kuwano K (2008) A novel secreted protease from Pseudomonas aeruginosa activates NF-kappa B through protease-activated receptors. Cell Microbiol 10:1491–1504

    Article  PubMed  CAS  Google Scholar 

  • Kida Y, Shimizu T, Kuwano K (2011) Cooperation between LepA and PlcH contributes to the in vivo virulence and growth of Pseudomonas aeruginosa in mice. Infect Immun 79:211–219

    Article  PubMed  CAS  Google Scholar 

  • Kiely PD, Haynes JM, Higgins CH, Franks A, Mark GL, Morrissey JP, O'Gara F (2006) Exploiting new systems-based strategies to elucidate plant–bacterial interactions in the rhizosphere. Microb Ecol 51:257–266

    Article  PubMed  CAS  Google Scholar 

  • Kimbrel JA, Givan SA, Halgren AB, Creason AL, Mills DI, Banowetz GM, Armstrong DJ, Chang JH (2010) An improved, high-quality draft genome sequence of the germination-arrest factor-producing Pseudomonas fluorescens WH6. BMC Genomics 11:522

    Article  PubMed  CAS  Google Scholar 

  • Kiss E, Huguet T, Poinsot V, Batut J (2004) The typA gene is required for stress adaptation as well as for symbiosis of Sinorhizobium meliloti 1021 with certain Medicago truncatula lines. Mol Plant Microbe Interact 17:235–244

    Article  PubMed  CAS  Google Scholar 

  • Kivistik PA, Putrins M, Puvi K, Ilves H, Kivisaar M, Horak R (2006) The ColRS two-component system regulates membrane functions and protects Pseudomonas putida against phenol. J Bacteriol 188:8109–8117

    Article  PubMed  CAS  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant-growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Knauth S, Hurek T, Brar D, Reinhold-Hurek B (2005) Influence of different Oryza cultivars on expression of nifH gene pools in roots of rice. Environ Microbiol 7:1725–1733

    Article  PubMed  CAS  Google Scholar 

  • Konstantinidis KT, Tiedje JM (2004) Trends between gene content and genome size in prokaryotic species with larger genomes. Proc Natl Acad Sci USA 101:3160–3165

    Article  PubMed  CAS  Google Scholar 

  • Kraus J, Loper JE (1995) Characterization of a genomic region required for production of the antibiotic pyoluteorin by the biological control agent Pseudomonas fluorescens Pf-5. Appl Environ Microbiol 61:849–854

    PubMed  CAS  Google Scholar 

  • Krishnan K, Flower AM (2008) Suppression of delta bipA phenotypes in Escherichia coli by abolishment of pseudouridylation at specific sites on the 23S rRNA. J Bacteriol 190:7675–7683

    Article  PubMed  CAS  Google Scholar 

  • Laue RE, Jiang Y, Chhabra SR, Jacob S, Stewart G, Hardman A, Downie JA, O'Gara F, Williams P (2000) The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis-tetradecenoyl)homoserine lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase. Microbiology-SGM 146:2469–2480

    CAS  Google Scholar 

  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809

    Article  PubMed  CAS  Google Scholar 

  • Liu J, He D, Ma X, Wu HJ, Gao X (2011) Identification of up-regulated genes of Bacillus amyloliquefaciens B55 during the early stage of direct surface contact with rice R109 root. Curr Microbiol 62:267–272

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopath 39:461–492

    Article  CAS  Google Scholar 

  • Margus T, Remm M, Tenson T (2007) Phylogenetic distribution of translational GTPases in bacteria. BMC Genomics 8:15

    Article  PubMed  CAS  Google Scholar 

  • Mark GL, Dow JM, Kiely PD, Higgins H, Haynes J, Baysse C, Abbas A, Foley T, Franks A, Morrissey J, O'Gara F (2005) Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe-plant interactions. Proc Natl Acad Sci USA 102:17454–17459

    Article  PubMed  CAS  Google Scholar 

  • Mark GL, Morrissey JP, Higgins P, O'Gara F (2006) Molecular-based strategies to exploit Pseudomonas biocontrol strains for environmental biotechnology applications. FEMS Microbiol Ecol 56:167–177

    Article  PubMed  CAS  Google Scholar 

  • Markowitz VM, Ivanova NN, Szeto E, Palaniappan K, Chu K, Dalevi D, Chen IMA, Grechkin Y, Dubchak I, Anderson I, Lykidis A, Mavromatis K, Hugenholtz P, Kyrpides NC (2008) IMG/M: a data management and analysis system for metagenomes. Nucl Acids Res 36:D534–D538

    Article  PubMed  CAS  Google Scholar 

  • Martinez JL, Sanchez MB, Martinez-Solano L, Hernandez A, Garmendia L, Fajardo A, Alvarez-Ortega C (2009) Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. FEMS Microbiol Rev 33:430–449

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Gil M, Yousef-Coronado F, Espinosa-Urgel M (2010) LapF, the second largest Pseudomonas putida protein, contributes to plant root colonization and determines biofilm architecture. Mol Microbiol 77:549–561

    Article  PubMed  CAS  Google Scholar 

  • Matilla MA, Espinosa-Urgel M, Rodriguez-Herva JJ, Ramos JL, Ramos-Gonzalez MI (2007) Genomic analysis reveals the major driving forces of bacterial life in the rhizosphere. Genome Biol 8:9

    Article  CAS  Google Scholar 

  • Maunsell B, Adams C, O'Gara F (2006) Complex regulation of AprA metalloprotease in Pseudomonas fluorescens M1114: evidence for the involvement of iron, the ECF sigma factor, PbrA and pseudobactin M1114 siderophore. Microbiology-SGM 152:29–42

    Article  CAS  Google Scholar 

  • Mavrodi DV, Joe A, Mavrodi OV, Hassan KA, Weller DM, Paulsen IT, Loper JE, Alfano JR, Thomashow LS (2011) Structural and functional analysis of the type III secretion system from Pseudomonas fluorescens Q8r1-96. J Bacteriol 193:177–189

    Article  PubMed  CAS  Google Scholar 

  • Mazurier S, Lemunier M, Siblot S, Mougel C, Lemanceau P (2004) Distribution and diversity of type III secretion system-like genes in saprophytic and phytopathogenic fluorescent pseudomonads. FEMS Microbiol Ecol 49:455–467

    Article  PubMed  CAS  Google Scholar 

  • McGrath KC, Mondav R, Sintrajaya R, Slattery B, Schmidt S, Schenk PM (2010) Development of an environmental functional gene microarray for soil microbial communities. Appl Environ Microbiol 76:7161–7170

    Article  PubMed  CAS  Google Scholar 

  • Miche L, Belkin S, Rozen R, Balandreau J (2003) Rice seedling whole exudates and extracted alkylresorcinols induce stress-response in Escherichia coli biosensors. Environ Microbiol 5:403–411

    Article  PubMed  CAS  Google Scholar 

  • Miller SH, Browne P, Prigent-Combaret C, Combes-Meynet E, Morrissey JP, O'Gara F (2010) Biochemical and genomic comparison of inorganic phosphate solubilization in Pseudomonas species. Environ Microbiol Rep 2:403–411

    Article  CAS  Google Scholar 

  • Molina MA, Ramos JL, Espinosa-Urgel M (2006) A two-partner secretion system is involved in seed and root colonization and iron uptake by Pseudomonas putida KT2440. Environ Microbiol 8:639–647

    Article  PubMed  CAS  Google Scholar 

  • Morgan JAW, Bending GD, White PJ (2005) Biological costs and benefits to plant–microbe interactions in the rhizosphere. J Exp Bot 56:1729–1739

    Article  PubMed  CAS  Google Scholar 

  • Morrissey JP, Dow JM, Mark GL, O'Gara F (2004) Are microbes at the root of a solution to world food production? Rational exploitation of interactions between microbes and plants can help to transform agriculture. EMBO Rep 5:922–926

    Article  PubMed  CAS  Google Scholar 

  • Nicolaisen MH, Baelum J, Jacobsen CS, Sorensen J (2008) Transcription dynamics of the functional tfdA gene during MCPA herbicide degradation by Cupriavidus necator AEO106 (pRO101) in agricultural soil. Environ Microbiol 10:571–579

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama E, Ohtsubo Y, Nagata Y, Tsuda M (2010) Identification of Burkholderia multivorans ATCC 17616 genes induced in soil environment by in vivo expression technology. Environ Microbiol 12:2539–2558

    Article  PubMed  CAS  Google Scholar 

  • Notz R, Maurhofer M, Schnider-Keel U, Duffy B, Haas D, Defago G (2001) Biotic factors affecting expression of the 2,4-diacetylphloroglucinol biosynthesis gene phlA in Pseudomonas fluorescens biocontrol strain CHA0 in the rhizosphere. Phytopath 91:873–881

    Article  CAS  Google Scholar 

  • Ollivier J, Kleineidam K, Reichel R, Thiele-Bruhn S, Kotzerke A, Kindler R, Wilke BM, Schloter M (2010) Effect of sulfadiazine-contaminated pig manure on the abundances of genes and transcripts involved in nitrogen transformation in the root-rhizosphere complexes of maize and clover. Appl Environ Microbiol 76:7903–7909

    Article  PubMed  CAS  Google Scholar 

  • Pallen MJ, Beatson SA, Bailey CM (2005) Bioinformatics, genomics and evolution of non-flagellar type-III secretion systems: a Darwinian perspective. FEMS Microbiol Rev 29:201–229

    Article  PubMed  CAS  Google Scholar 

  • Pfennig PL, Flower AM (2001) BipA is required for growth of Escherichia coli K12 at low temperature. Mol Genet Genomics 266:313–317

    Article  PubMed  CAS  Google Scholar 

  • Pothier JF, Wisniewski-Dye F, Weiss-Gayet M, Moenne-Loccoz Y, Prigent-Combaret C (2007) Promoter-trap identification of wheat seed extractinduced genes in the plant-growth-promoting rhizobacterium Azospirillum brasilense Sp245. Microbiology-SGM 153:3608–3622

    Article  CAS  Google Scholar 

  • Preston GM, Bertrand N, Rainey PB (2001) Type III secretion in plant growth-promoting Pseudomonas fluorescens SBW25. Mol Microbiol 41:999–1014

    Article  PubMed  CAS  Google Scholar 

  • Putrins M, Ilves H, Lilje L, Kivisaar M, Horak R (2010) The impact of ColRS two-component system and TtgABC efflux pump on phenol tolerance of Pseudomonas putida becomes evident only in growing bacteria. BMC Microbiol 10:110

    Article  PubMed  CAS  Google Scholar 

  • Rainey PB (1999) Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ Microbiol 1:243–257

    Article  PubMed  CAS  Google Scholar 

  • Ramos-Gonzalez MI, Campos MJ, Ramos JL (2005) Analysis of Pseudomonas putida KT2440 gene expression in the maize rhizosphere: in vitro expression technology capture and identification of root-activated promoters. J Bacteriol 187:4033–4041

    Article  PubMed  CAS  Google Scholar 

  • Rediers H, Bonnecarrere V, Rainey PB, Hamonts K, Vanderleyden J, De Mot R (2003) Development and application of a dapB-based in vivo expression technology system to study colonization of rice by the endophytic nitrogen-fixing bacterium Pseudomonas stutzeri A15. Appl Environ Microbiol 69:6864–6874

    Article  PubMed  CAS  Google Scholar 

  • Rezzonico F, Defago G, Moenne-Loccoz Y (2004) Comparison of ATPase-encoding type III secretion system hrcN genes in biocontrol fluorescent pseudomonads and in phytopathogenic proteobacteria. Appl Environ Microbiol 70:5119–5131

    Article  PubMed  CAS  Google Scholar 

  • Rezzonico F, Binder C, Defago G, Moenne-Loccoz Y (2005) The type III secretion system of biocontrol Pseudomonas fluorescens KD targets the phytopathogenic chromista Pythium ultimum and promotes cucumber protection. Mol Plant Microbe Interact 18:991–1001

    Article  PubMed  CAS  Google Scholar 

  • Rochat L, Pechy-Tarr M, Baehler E, Maurhofer M, Keel C (2010) Combination of fluorescent reporters for simultaneous monitoring of root colonization and antifungal gene expression by a biocontrol Pseudomonad on cereals with flow cytometry. Mol Plant Microbe Interact 23:949–961

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Navarro DN, Dardanelli MS, Ruiz-Sainz JE (2007) Attachment of bacteria to the roots of higher plants. FEMS Microbiol Lett 272:127–136

    Article  PubMed  CAS  Google Scholar 

  • Salacha R, Kovacic F, Brochier-Armanet C, Wilhelm S, Tommassen J, Filloux A, Voulhoux R, Bleves S (2010) The Pseudomonas aeruginosa patatin-like protein PlpD is the archetype of a novel Type V secretion system. Environ Microbiol 12:1498–1512

    PubMed  CAS  Google Scholar 

  • Sharma S, Aneja MK, Mayer J, Munch JC, Schloter M (2005) Diversity of transcripts of nitrite reductase genes (nirK and nirS) in rhizospheres of grain legumes. Appl Environ Microbiol 71:2001–2007

    Article  PubMed  CAS  Google Scholar 

  • Shrestha PM, Kube M, Reinhardt R, Liesack W (2009) Transcriptional activity of paddy soil bacterial communities. Environ Microbiol 11:960–970

    Article  PubMed  CAS  Google Scholar 

  • Silby MW, Levy SB (2004) Use of in vivo expression technology to identify genes important in growth and survival of Pseudomonas fluorescens Pf0-1 in soil: discovery of expressed sequences with novel genetic organization. J Bacteriol 186:7411–7419

    Article  PubMed  CAS  Google Scholar 

  • Silby MW, Cerdeno-Tarraga AM, Vernikos GS, Giddens SR, Jackson RW, Preston GM, Zhang XX, Moon CD, Gehrig SM, Godfrey SAC, Knight CG, Malone JG, Robinson Z, Spiers AJ, Harris S, Challis GL, Yaxley AM, Harris D, Seeger K, Murphy L, Rutter S, Squares R, Quail MA, Saunders E, Mavromatis K, Brettin TS, Bentley SD, Hothersall J, Stephens E, Thomas CM, Parkhill J, Levy SB, Rainey PB, Thomson NR (2009) Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biol 10:R51

    Article  PubMed  CAS  Google Scholar 

  • Simons M, Permentier HP, deWeger LA, Wijffelman CA, Lugtenberg BJJ (1997) Amino acid synthesis is necessary for tomato root colonization by Pseudomonas fluorescens strain WCS365. Mol Plant Microbe Interact 10:102–106

    Article  CAS  Google Scholar 

  • Smith LM, Tola E, deBoer P, O'Gara F (1999) Signalling by the fungus Pythium ultimum represses expression of two ribosomal RNA operons with key roles in the rhizosphere ecology of Pseudomonas fluorescens F113. Environ Microbiol 1:495–502

    Article  PubMed  CAS  Google Scholar 

  • Sorek R, Cossart P (2010) Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nat Rev Gen 11:9–16

    Article  CAS  Google Scholar 

  • Sorensen J, Nicolaisen MH, Ron E, Simonet P (2009) Molecular tools in rhizosphere microbiology-from single-cell to whole-community analysis. Plant Soil 321:483–512

    Article  CAS  Google Scholar 

  • Taroncher-Oldenburg G, Griner EM, Francis CA, Ward BB (2003) Oligonucleotide microarray for the study of functional gene diversity in the nitrogen cycle in the environment. Appl Environ Microbiol 69:1159–1171

    Article  PubMed  CAS  Google Scholar 

  • Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA (2003) The COG database: an updated version includes eukaryotes. BMC Bioinfo 4:41

    Article  Google Scholar 

  • Torsvik V, Øvreås L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245

    Article  PubMed  CAS  Google Scholar 

  • Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC, Bork P, Hugenholtz P, Rubin EM (2005) Comparative metagenomics of microbial communities. Science 308:554–557

    Article  PubMed  CAS  Google Scholar 

  • Troisfontaines P, Cornelis GR (2005) Type III secretion: more systems than you think. Physiology 20:326–339

    Article  PubMed  CAS  Google Scholar 

  • Urich T, Lanzen A, Qi J, Huson DH, Schleper C, Schuster SC (2008) Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLOS One 3:e2527

    Article  PubMed  CAS  Google Scholar 

  • van Overbeek L, van Elsas JD (2008) Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.). FEMS Microbiol Ecol 64:283–296

    Article  PubMed  CAS  Google Scholar 

  • Viollet A, Corberand T, Mougel C, Robin A, Lemanceau P, Mazurier S (2011) Fluorescent pseudomonads harboring type III secretion genes are enriched in the mycorrhizosphere of Medicago truncatula. FEMS Microbiol Ecol 75:457–467

    Article  PubMed  CAS  Google Scholar 

  • Warmink JA, van Elsas JD (2008) Selection of bacterial populations in the mycosphere of Laccaria proxima: is type III secretion involved? ISME J 2:887–900

    Article  PubMed  CAS  Google Scholar 

  • Weir TL, Stull VJ, Badri D, Trunck LA, Schweizer HP, Vivanco J (2008) Global gene expression profiles suggest an important role for nutrient acquisition in early pathogenesis in a plant model of Pseudomonas aeruginosa infection. Appl Environ Microbiol 74:5784–5791

    Article  PubMed  CAS  Google Scholar 

  • Wertz S, Dandie CE, Goyer C, Trevors JT, Patten CL (2009) Diversity of nirK denitrifying genes and transcripts in an agricultural Soil. Appl Environ Microbiol 75:7365–7377

    Article  PubMed  CAS  Google Scholar 

  • Winsor GL, Van Rossum T, Lo R, Khaira B, Whiteside MD, Hancock REW, Brinkman FSL (2009) Pseudomonas Genome Database: facilitating user-friendly, comprehensive comparisons of microbial genomes. Nucl Acids Res 37:D483–D488

    Article  PubMed  CAS  Google Scholar 

  • Wu LY, Thompson DK, Liu XD, Fields MW, Bagwell CE, Tiedje JM, Zhou JZ (2004) Development and evaluation of microarray-based whole-genome hybridization for detection of microorganisms within the context of environmental applications. Environ Sci Tech 38:6775–6782

    Article  CAS  Google Scholar 

  • Yoder-Himes DR, Chain PSG, Zhu Y, Wurtzel O, Rubin EM, Tiedje JM, Sorek R (2009) Mapping the Burkholderia cenocepacia niche response via high-throughput sequencing. Proc Natl Acad Sci USA 106:3976–3981

    Article  PubMed  CAS  Google Scholar 

  • Yousef-Coronado F, Travieso ML, Espinosa-Urgel M (2008) Different, overlapping mechanisms for colonization of abiotic and plant surfaces by Pseudomonas putida. FEMS Microbiol Lett 288:118–124

    Article  PubMed  CAS  Google Scholar 

  • Yuan ZC, Haudecoeur E, Faure D, Kerr KF, Nester EW (2008) Comparative transcriptome analysis of Agrobacterium tumefaciens in response to plant signal salicylic acid, indole-3-acetic acid and gamma-amino butyric acid reveals signalling cross-talk and Agrobacterium-plant co-evolution. Cell Microbiol 10:2339–2354

    Article  PubMed  CAS  Google Scholar 

  • Yuan JJ, Zweers JC, van Dijl JM, Dalbey RE (2010) Protein transport across and into cell membranes in bacteria and archaea. Cell Mol Life Sci 67:179–199

    Article  PubMed  CAS  Google Scholar 

  • Zhang XX, Lilley AK, Bailey MJ, Rainey PB (2004) The indigenous Pseudomonas plasmid pQBR103 encodes plant-inducible genes, including three putative helicases. FEMS Microbiol Ecol 51:9–17

    Article  PubMed  CAS  Google Scholar 

  • Zhang XX, George A, Bailey MJ, Rainey PB (2006) The histidine utilization (hut) genes of Pseudomonas fluorescens SBW25 are active on plant surfaces, but are not required for competitive colonization of sugar beet seedlings. Microbiology-SGM 152:1867–1875

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported in parts by grants awarded by the Science Foundation of Ireland (07/IN.1/B948, 08/RFP/GEN1295, 08/RFP/GEN1319, SFI09/RFP/BMT2350); the Department of Agriculture, Fisheries and Food (RSF grants 06-321 and 06-377; FIRM grants 06RDC459 06RDC506 and 08RDC629); the European Commission (MTKD-CT2006-042062, Marie Curie TOK:TRAMWAYS, EU256596); IRCSET (05/EDIV/FP107/INTERPAM, EMBARK), the Marine Institute Beaufort award (C&CRA 2007/082), the Environmental Protection Agency (EPA 2006-PhD-S-21, EPA 2008-PhD-S-2) and the HRB (RP/2006/271, RP/2007/290, HRA/2009/146). The authors thank members of the BIOMERIT Research Centre for their support and scientific input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fergal O’Gara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barret, M., Morrissey, J.P. & O’Gara, F. Functional genomics analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence. Biol Fertil Soils 47, 729–743 (2011). https://doi.org/10.1007/s00374-011-0605-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-011-0605-x

Keywords

Navigation