Skip to main content
Log in

Microbial mediation of benthic biogenic silica dissolution

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

Pore water profiles from 24 stations in the South Atlantic (located in the Guinea, Angola, Cape, Guyana, and Argentine basins) show good correlations of oxygen and silicon, suggesting microbially mediated dissolution of biogenic silica. We used simple analytical transport and reaction models to show the tight coupling of the reconstructed process kinetics of aerobic respiration and silicon regeneration. A generic transport and reaction model successfully reproduced the majority of Si pore water profiles from aerobic respiration rates, confirming that the dissolution of biogenic silica (BSi) occurs proportionally to O2 consumption. Possibly limited to well-oxygenated sediments poor in BSi, benthic Si fluxes can be inferred from O2 uptake with satisfactory accuracy. Compared to aerobic respiration kinetics, the solubility of BSi emerged as a less influential parameter for silicon regeneration. Understanding the role of bacteria for silicon regeneration requires further investigations, some of which are outlined. The proposed aerobic respiration control of benthic silicon cycling is suitable for benthic–pelagic models. The empirical relation of BSi dissolution to aerobic respiration can be used for regionalization assessments and estimates of the silicon budget to increase the understanding of global primary and export production patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adler M, Hensen C, Schulz HD (2000) CoTReM - Column Transport and Reaction Model. Version 2.3, User Guide. Faculty of Geochemistry, University of Bremen

  • Adler M, Hensen C, Wenzhöfer F, Pfeifer K, Schulz HD (2001) Modeling of calcite dissolution by oxic respiration in supralysoclinal deep-sea sediments. Mar Geol 177:167–189

    Article  Google Scholar 

  • Archer D, Lyle M, Rodgers K, Froelich P (1993) What controls opal preservation in tropical deep-sea sediments? Paleoceanography 8:7–21

    Article  Google Scholar 

  • Armstrong RA, Lee C, Hedges JI, Honjo S, Wakeham SG (2002) A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep-Sea Res II 49:219–236

    Article  Google Scholar 

  • Barker P, Fontes JC, Gasse F, Druart JC (1994) Experimental dissolution of diatom silica in concentrated salt solutions and implications for paleoenvironmental reconstruction. Limnol Oceanogr 39(1):99–110

    Article  Google Scholar 

  • Berelson WM, Hammond DE, Johnson KS (1987) Benthic fluxes and the cycling of biogenic silica and carbon in two southern-California borderland basins. Geochim Cosmochim Acta 51:1345–1363

    Article  Google Scholar 

  • Berelson WM, Prokopenko M, Sansone FJ, Graham AW, McManus J, Bernhard JM (2005) Anaerobic diagenesis of silica and carbon in continental margin sediments: discrete zones of TCO2 production. Geochim Cosmochim Acta 69:4611–4629

    Article  Google Scholar 

  • Berner RA (1980) Early diagenesis: a theoretical approach. Princton University Press, Princton

    Google Scholar 

  • Bidle KD, Azam F (1999) Accelerated dissolution of diatom silica by marine bacterial assemblages. Nature 397:508–512

    Article  Google Scholar 

  • Bidle KD, Azam F (2001) Bacterial control of silicon regeneration from diatom detritus: significance of bacterial ectohydrolases and species identity. Limnol Oceanogr 46:1606–1623

    Article  Google Scholar 

  • Bidle KD, Manganelli M, Azam F (2002) Regulation of oceanic silicon and carbon preservation by temperature control on bacteria. Science 298:1980–1984

    Article  Google Scholar 

  • Boudreau BP (1990a) Asymptotic forms and solutions of the model for silica-opal diagenesis in bioturbated sediments. J Geophys Res Oceans 95:7367–7379

    Article  Google Scholar 

  • Boudreau BP (1990b) Modeling early diagenesis of silica in non-mixed sediments. Deep-Sea Res A 37:1543–1567

    Article  Google Scholar 

  • Boudreau BP (1997) Diagenetic models and their implementation. Modelling transport and reactions in aquatic sediments. Springer, Berlin

    Google Scholar 

  • Canfield DE, Jorgensen BB, Fossing H, Glud R, Gundersen J, Ramsing NB, Thamdrup B, Hansen JW, Nielsen LP, Hall POJ (1993) Pathways of organic-carbon oxidation in 3 continental-margin sediments. Mar Geol 113:27–40

    Article  Google Scholar 

  • DeMaster DJ (1981) The supply and accumulation of silica in the marine-environment. Geochim Cosmochim Acta 45:1715–1732

    Article  Google Scholar 

  • DeMaster DJ (2002) The accumulation and cycling of biogenic silica in the southern ocean: revisiting the marine silica budget. Deep-Sea Res II 49:3155–3167

    Article  Google Scholar 

  • Devol AH, Christensen JP (1993) Benthic fluxes and nitrogen cycling in sediments of the continental margin of the eastern North Pacific. J Mar Res 51:345–372

    Article  Google Scholar 

  • Dixit S, Van Cappellen P (2002) Surface chemistry and reactivity of biogenic silica. Geochim Cosmochim Acta 66:2559–2568

    Article  Google Scholar 

  • Dixit S, Van Cappellen P (2003) Predicting benthic fluxes of silicic acid from deep-sea sediments. J Geophys Res Oceans 108(C10):3334. doi:10.1029/2002JC001309

    Article  Google Scholar 

  • Dixit S, Van Cappellen P, Van Bennekom AJ (2001) Processes controlling solubility of biogenic silica and pore water build-up of silicic acid in marine sediments. Mar Chem 73:333–352

    Article  Google Scholar 

  • Dugdale RC, Wilkerson FP (1998) Silicate regulation of new production in the equatorial Pacific upwelling. Nature 391:270–273

    Article  Google Scholar 

  • Dugdale RC, Wilkerson FP, Minas HJ (1995) The role of a silicate pump in driving new production. Deep-Sea Res I 42:697–719

    Article  Google Scholar 

  • Egge JK, Aksnes DL (1992) Silicate as regulating nutrient in phytoplankton competition. Mar Ecol 83:281–289

    Article  Google Scholar 

  • Froelich PN, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR, Cullen D, Dauphin P, Hammond D, Hartman B, Maynard V (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic—suboxic diagenesis. Geochim Cosmochim Acta 43:1075–1090

    Article  Google Scholar 

  • Gallinari M, Ragueneau O, Corrin L, DeMaster DJ, Tréguer P (2002) The importance of water column processes on the dissolution properties of biogenic silica in deep-sea sediments i. solubility. Geochim Cosmochim Acta 66:2701–2717

    Article  Google Scholar 

  • Gallinari M, Ragueneau O, DeMaster D, Hartnett H, Rickert D, Thomas C (2008) Influence of seasonal phytodetritus deposition on biogenic silica dissolution in marine sediments–Potential effects on preservation. Deep-Sea Res II 55(22/23):2451–2464

    Article  Google Scholar 

  • Gehlen M, Beck L, Calas G, Flank AM, Van Bennekom AJ, Van Beusekom JEE (2002) Unraveling the atomic structure of biogenic silica: evidence of the structural association of Al and Si in diatom frustules. Geochim Cosmochim Acta 66:1601–1609

    Article  Google Scholar 

  • Glud RN, Gundersen JK, Jørgensen BB, Revsbech NP, Schulz HD (1994) Diffusive and total uptake of deep-sea sediments in the eastern South Atlantic Ocean: In situ and laboratory measurements. Deep-Sea Res I 41:1767–1788

    Article  Google Scholar 

  • Goel R, Mino T, Satoh H, Matsuo T (1998) Comparison of hydrolytic enzyme systems in pure culture and activated sludge under different electron acceptor conditions. Water Sci Technol 37(4/5):335–343

    Google Scholar 

  • Greenwood JE, Truesdale VW, Rendell AR (2001) Biogenic silica dissolution in seawater—in vitro chemical kinetics. Prog Oceanogr 48:1–23

    Article  Google Scholar 

  • Hall POJ, Hulth S, Hulthe G, Landen A, Tengberg A (1996) Benthic nutrient fluxes on a basin-wide scale in the Skagerrak (north-eastern North Sea). J Sea Res 35:123–137

    Article  Google Scholar 

  • Hammond DE, McManus J, Berelson WM, Kilgore TE, Pope RH (1996) Early diagenesis of organic material in equatorial Pacific sediments: stoichiometry and kinetics. Deep-Sea Res II 43:1365–1412

    Article  Google Scholar 

  • Hecky RE, Mopper K, Kilham P, Degens ET (1973) The amino acid and sugar composition of diatom cell-walls. Mar Biol 19:323–331

    Article  Google Scholar 

  • Hedges JI, Baldock JA, Gelinas Y, Lee C, Peterson M, Wakeham SG (2001) Evidence for non-selective preservation of organic matter in sinking marine particles. Nature 409:801–804

    Article  Google Scholar 

  • Hensen C, Landenberger H, Zabel M, Schulz HD (1998) Quantification of diffusive benthic fluxes of nitrate, phosphate, and silicate in the southern Atlantic Ocean. Glob Biogeochem Cycles 12:193–210

    Article  Google Scholar 

  • Hensen C, Zabel M, Schulz HD (2000) A comparison of benthic nutrient fluxes from deep-sea sediments off Namibia and Argentina. Deep-Sea Res II 47:2029–2050

    Article  Google Scholar 

  • Hensen C, Zabel M, Pfeifer K, Schwenk T, Kasten S, Riedinger N, Schulz HD, Boettius A (2003) Control of sulfate pore-water profiles by sedimentary events and the significance of anaerobic oxidation of methane for the burial of sulfur in marine sediments. Geochim Cosmochim Acta 67:2631–2647

    Article  Google Scholar 

  • Henze M, Mladenovski C (1991) Hydrolysis of particulate substrate by activated sludge under aerobic, anoxic and anaerobic conditions. Water Res 25(1):61–64

    Article  Google Scholar 

  • Jahnke RA (1996) The global ocean flux of particulate organic carbon: areal distribution and magnitude. Glob Biogeochem Cycles 10:71–88

    Article  Google Scholar 

  • Jin X, Gruber N, Dunne JP, Sarmiento JL, Armstrong RA (2006) Diagnosing the contribution of phytoplankton functional groups to the production and export of particulate organic carbon, CaCO3, and opal from global nutrient and alkalinity distributions. Globb Biogeochem Cycles 20. doi:10.1029/2005GB002532

    Google Scholar 

  • Kamatani A, Ejiri N, Tréguer P (1988) The dissolution kinetics of diatom ooze from the Antarctic area. Deep-Sea Res A 35:1195–1203

    Article  Google Scholar 

  • Keir RS (1982) Dissolution of calcite in the deep-sea—theoretical prediction for the case of uniform size particles settling into a well-mixed sediment. Am J Sci 282:193–236

    Article  Google Scholar 

  • Khalil K, Rabouille C, Gallinari M, Soetaert K, DeMaster D, Ragueneau O (2007) Constraining biogenic silica dissolution in marine sediments: a comparison between diagenetic models and experimental dissolution rates. Mar Chem 106(1/2):223–238

    Article  Google Scholar 

  • Kröger N, Lorenz S, Brunner E, Sumper M (2002) Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Science 298:584–586

    Article  Google Scholar 

  • Landenberger H, Adler M, Zabel M, Hensen C, Schulz HD (1997) Softwareentwicklung zur computerunterstützten Simulation frühdiagenetischer Prozesse in marinen Sedimenten. Z Dtsch Geol Ges 148:447–455

    Google Scholar 

  • Lee C, Wakeham SG, Hedges JI (2000) Composition and flux of particulate amino acids and chloropigments in equatorial Pacific seawater and sediments. Deep-Sea Res I 47:1535–1568

    Article  Google Scholar 

  • Lewin JC (1961) The dissolution of silica from diatom walls. Geochim Cosmochim Acta 21:182–198

    Article  Google Scholar 

  • Luce RW, Bartlett RW, Parks GA (1972) Dissolution kinetics of magnesium silicates. Geochim Cosmochim Acta 36:35–50

    Article  Google Scholar 

  • Mann DG (1999) The species concept in diatoms. Phycologia 38:437–495

    Article  Google Scholar 

  • Martin WR, Bender M, Leinen M, Orchardo J (1991) Benthic organic-carbon degradation and biogenic silica dissolution in the central equatorial Pacific. Deep-Sea Res A 38:1481–1516

    Article  Google Scholar 

  • McManus J, Hammond DE, Berelson WM, Kilgore TE, DeMaster DJ, Ragueneau OG, Collier RW (1995) Early diagenesis of biogenic opal—dissolution rates, kinetics, and paleoceanographic implications. Deep-Sea Res II 42:871–903

    Article  Google Scholar 

  • Michalopoulos P, Aller RC (2004) Early diagenesis of biogenic silica in the Amazon delta: alteration, authigenic clay formation, and storage. Geochim Cosmochim Acta 68:1061–1085

    Article  Google Scholar 

  • Michalopoulos P, Aller RC, Reeder RJ (2000) Conversion of diatoms to clays during early diagenesis in tropical, continental shelf muds. Geology 28:1095–1098

    Article  Google Scholar 

  • Moriceau B, Goutx M, Guigue C, Lee C, Armstrong R, Duflos M, Tamburini C, Charrière B, Ragueneau O (2009) Si-C interactions during degradation of the diatom Skeletonema marinoi. Deep-Sea Res II 56(18):1381–1395

    Article  Google Scholar 

  • Müller PJ, Schneider R (1993) An automated leaching method for the determination of opal in sediments and particulate matter. Deep-Sea Res I 40:425–444

    Article  Google Scholar 

  • Murray RW, Leinen M (1993) Chemical transport to the seafloor of the equatorial Pacific Ocean across a latitudinal transect at 135°W: tracking sedimentary major, trace, and rare earth element fluxes at the Equator and the Intertropical Convergence Zone. Geochim Cosmochim Acta 57(17):4141–4163

    Article  Google Scholar 

  • Nelson DM, Tréguer P, Brzezinski MA, Leynaert A, Queguiner B (1995) Production and dissolution of biogenic silica in the ocean—revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob Biogeochem Cycles 9:359–372

    Article  Google Scholar 

  • Pfeifer K, Hensen C, Adler M, Wenzhöfer F, Weber B, Schulz HD (2002) Modeling of subsurface calcite dissolution, including the respiration and reoxidation processes of marine sediments in the region of equatorial upwelling off Gabon. Geochim Cosmochim Acta 66:4247–4259

    Article  Google Scholar 

  • Picket-Heaps J, Tippit DH, Andreozzi JA (1990) The cell biology of diatom valve formation. In: Round FE, Chapman DJ (eds) Progress in phycological research, vol 7. Biopress, Bristol, pp 1–168

    Google Scholar 

  • Rabouille C, Gaillard JF, Tréguer P, Vincendeau MA (1997) Biogenic silica recycling in surficial sediments across the Polar Front of the Southern Ocean (Indian Sector). Deep-Sea Res I 44:1151–1176

    Google Scholar 

  • Ragueneau O, Tréguer P, Leynaert A, Anderson RF, Brzezinski MA, DeMaster DJ, Dugdale RC, Dymond J, Fischer G, Francois R, Heinze C, Maier-Reimer E, Martin-Jezequel V, Nelson DM, Queguiner B (2000) A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Glob Planet Change 26:317–365

    Article  Google Scholar 

  • Ragueneau O, Dittert N, Pondaven P, Tréguer P, Corrin L (2002) Si/C decoupling in the world ocean: Is the Southern Ocean different? Deep-Sea Res II 49:3127–3154

    Article  Google Scholar 

  • Rickert D, Schlüter M, Wallmann K (2002) Dissolution kinetics of biogenic silica from the watercolumn to the sediments. Geochim Cosmochim Acta 66:439–455

    Article  Google Scholar 

  • Rivkin RB, Legendre L, Deibel D, Tremblay JE, Klein B, Crocker K, Roy S, Silverberg N, Lovejoy C, Mesple F, Romero N, Anderson MR, Matthews P, Savenkoff C, Vezina A, Therriault JC, Wesson J, Berube C, Ingram RG (1996) Vertical flux of biogenic carbon in the ocean: is there food web control? Science 272:1163–1166

    Article  Google Scholar 

  • Romero O, Hensen C (2002) Oceanographic control of biogenic opal and diatoms in surface sediments of the Southwestern Atlantic. Mar Geol 186:263–280

    Article  Google Scholar 

  • Rothman DH, Forney DC (2007) Physical model for the decay and preservation of marine organic carbon. Science 316:1325–1328

    Article  Google Scholar 

  • Sayles FL, Deuser WG, Goudreau JE, Dickison WH, Jickells TD, King P (1996) The benthic cycle of biogenic opal at the Bermuda Atlantic Time Series site. Deep-Sea Res I 43:383–409

    Article  Google Scholar 

  • Schink DR, Guinasso NL, Fanning KA (1975) Processes affecting concentration of silica at sediment-water interface of Atlantic Ocean. J Geophys Res Oceans Atmospheres 80:3013–3031

    Article  Google Scholar 

  • Schrader HJ (1971) Fecal pellets: role in sedimentation of pelagic diatoms. Science 174:55–57

    Article  Google Scholar 

  • Seiter K, Hensen C, Schroter E, Zabel M (2004) Organic carbon content in surface sediments—defining regional provinces. Deep-Sea Res I 51:2001–2026

    Article  Google Scholar 

  • Tande K, Slagstad D (1985) Assimilation efficiency in herbivorous aquatic organisms—the potential of the ratio methods using 14C and biogenic silica as markers. Limnol Oceanogr 30:1093–1099

    Article  Google Scholar 

  • Thamdrup B, Canfield DE (1996) Pathways of carbon oxidation in continental margin sediments off central Chile. Limnol Oceanogr 41:1629–1650

    Article  Google Scholar 

  • Tréguer P, Nelson DM, Van Bennekom AJ, Demaster DJ, Leynaert A, Queguiner B (1995) The silica balance in the world ocean—a reestimate. Science 268:375–379

    Article  Google Scholar 

  • Truesdale VW, Greenwood JE, Rendell AR (2005) In vitro, batch-dissolution of biogenic silica in seawater—the application of recent modelling to real data. Progr Oceanogr 66(1):1–24

    Article  Google Scholar 

  • Van Bennekom AJ, Buma AGJ, Nolting RF (1991) Dissolved aluminum in the Weddell-Scotia confluence and effect of Al on the dissolution kinetics of biogenic silica. Mar Chem 35:423–434

    Article  Google Scholar 

  • Van Beusekom JEE, Van Bennekom AJ, Tréguer P, Morvan J (1997) Aluminium and silicic acid in water and sediments of the Enderby and Crozet Basins. Deep-Sea Res II 44:987–1003

    Article  Google Scholar 

  • Van Cappellen P, Qiu LQ (1997a) Biogenic silica dissolution in sediments of the Southern Ocean. 1. Solubility. Deep-Sea Res II 44:1109–1128

    Article  Google Scholar 

  • Van Cappellen P, Qiu LQ (1997b) Biogenic silica dissolution in sediments of the Southern Ocean. 2. Kinetics. Deep-Sea Res II 44:1129–1149

    Article  Google Scholar 

  • Van Cappellen P, Dixit S, Van Beusekom J (2002) Biogenic silica dissolution in the oceans: reconciling experimental and field-based dissolution rates. Glob Biogeochem Cycles 16(4), 1075. doi:10.1029/2001GB001431

    Article  Google Scholar 

  • Vetter YA, Deming JW, Jumars PA, Krieger-Brockett BB (1998) A predictive model of bacterial foraging by means of freely released extracellular enzymes. Microb Ecol 36:75–92

    Article  Google Scholar 

  • Volcani BE (2002) Cell wall formation in diatoms: morphogenesis and biochemistry. In: Simpson TL, Volcani, BE (eds) Silicon and siliceous structures in biological systems. Springer, Berlin, pp 157–200

    Google Scholar 

  • Wenzhöfer F, Glud RN (2002) Benthic carbon mineralization in the Atlantic: a synthesis based on in situ data from the last decade. Deep-Sea Res I 49:1255–1279

    Article  Google Scholar 

  • Wenzhöfer F, Adler M, Kohls O, Hensen C, Strotmann B, Schulz HD (2001) Calcite dissolution driven by benthic mineralization in the deep-sea: In situ measurements of Ca2 + , pH, pCO2 and O2. Geochim Cosmochim Acta 65:2677–2690

    Article  Google Scholar 

  • Wetherbee R, Crawford S, Mulvaney P (2000) The nanostructure and development of diatom biosilica. In: Baeurlein E (ed) Biomineralization: from biology to biotechnology and medical application. Wiley-VCH, Weinheim, pp 189–206

    Google Scholar 

  • Zabel M, Dahmke A, Schulz HD (1998) Regional distribution of diffusive phosphate and silicate fluxes through the sediment water interface—The eastern South Atlantic. Deep-Sea Res I 45:277–300

    Article  Google Scholar 

Download references

Acknowledgements

Constructive comments and suggestions by Bernard P. Boudreau, Gunnar Brandt, and two anonymous reviewers are greatly acknowledged. We thank Kerstin Pfeifer, Katherina Seiter, and Matthias Zabel for fruitful discussions on the subject. Special thanks go to Frank Wenzhöfer and Matthias Zabel for supplying in situ O2 and Mn data. This work was supported by the DFG projects FOR 432 and SFB 754.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan M. Holstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holstein, J.M., Hensen, C. Microbial mediation of benthic biogenic silica dissolution. Geo-Mar Lett 30, 477–492 (2010). https://doi.org/10.1007/s00367-009-0181-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-009-0181-3

Keywords

Navigation