Skip to main content

Advertisement

Log in

Hydroacoustic experiments to establish a method for the determination of methane bubble fluxes at cold seeps

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

Hydroacoustic methods are particularly suitable for investigations of the occurrence, cyclicity and amount of bubbles released at cold seeps without disturbing them. Experiments with a horizontally looking single beam transducer (40 and 300 kHz) directed towards artificially produced bubbles show that the backscattering strength of the bubbles increases with the gas flux rate independently of the bubble radii distribution. It is demonstrated that an acoustic system can be calibrated in such a way that gas flux rates of bubble-size spectra, as observed at natural seeps, can be directly related to the echo level of a known, acoustically insonified volume. No system-specific parameters have to be known except the beam width.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieskes A, Amann R, Joergensen BB, Witte U, Pfannkuche O (2000) A microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    CAS  PubMed  Google Scholar 

  • Bohrmann G, Linke P, Suess E, Pfannkuche O (eds)(2000) RV Sonne Cruise Report TECFLUX 1 1999. GEOMAR Report 93

  • Clay C, Medwin H (1977) Acoustical oceanography: principles and applications. Wiley, New York

    Google Scholar 

  • Commander K, Moritz E (1989) Off-resonance contributions to acoustical bubble spectra. J Acoust Soc Am 85:2665–2669

    Google Scholar 

  • Dando PR, Jensen P, O’Hara SCM, Niven SJ, Schmaljohan R, Schuster U, Taylor LJ (1994) The effects of methane seepage at an intertidal/shallow subtidal site on the shore of the Kattegat, Vendsyssel, Denmark. Bull Geol Soc Denmark 41:65–79

    CAS  Google Scholar 

  • Dimitrov L, Dontcheva V (1994) Seabed pockmarks in the southern Bulgarian Black Sea zone. Bull Geol Soc Denmark 41:24–33

    Google Scholar 

  • Duan Z, Møller N, Weare JH (1992a) An equation of state for the CH4–CO2–H2O system: I. Pure systems from 0–1,000 °C and 0 to 8,000 bar. Geochim Cosmochim Acta 56:2605–2617

    Article  CAS  Google Scholar 

  • Duan Z, Møller N, Weare JH (1992b) An equation of state for the CH4–CO2–H2O system: II. Mixtures from 50–1,000 °C and 0 to 1,000 bar. Geochim Cosmochim Acta 56:2619–2631

    CAS  Google Scholar 

  • Elvert M, Suess E, Greinert J, Whiticar MJ (2000) Archaea mediating anaerobic methane oxidation in deep-sea sediments at cold seeps of the eastern Aleutian subduction zone. Organic Geochem 31:1175–1187

    Article  CAS  Google Scholar 

  • Greinert J, Bohrmann G, Suess E (2001) Methane-venting and gas hydrate-related carbonates at the Hydrate Ridge: their classification, distribution and origin. In: Paull CK, Dillon WP (eds) Natural gas hydrates: occurrence, distribution, and detection. Geophys Monogr 124:99–113

    Google Scholar 

  • Heeschen KU, Trehu AM, Collier RW, Suess E, Rehder G (2003) Distribution and height of methane bubble plumes on the Cascadia Margin characterized by acoustic imaging. Geophys Res Lett 30:1643, Doi:10.1029/2003GL016974

  • Hornafius JS, Quigley D, Luyendyk BP (1999) The world’s most spectacular marine hydrocarbon seeps (Coal Oil Point, Santa Barbara Channel, California): quantification of emission. J Geophys Res Doi: 104:20703–20711

    Google Scholar 

  • Hovland M, Judd AG (1988) Seabed pockmarks and seepage: impact on geology, biology and the marine environment. Graham and Trotman, London

    Google Scholar 

  • Johnson BD, Cooke RC (1979) Bubble populations and spectra in coastal waters: a photographic approach. J Geophys Res 84:3761–3766

    Google Scholar 

  • Judd AG, Long D, Sankey M (1994) Pockmark formation and activity, UK block 15/25, North Sea. Bull Geol Soc Denmark 41:34–49

    Google Scholar 

  • Judd AG, Davis G, Wilson J, Holmes R, Baron G, Bryden I (1997) Contributions to atmospheric methane by natural seepages on the UK continental shelf. Mar Geol 140:427–455

    Article  CAS  Google Scholar 

  • Judd AG, Hovland M, Dimitrov LI, Garcia Gil S, Jukes V (2002) The Geological methane budget at continental margins and its influence on climate change. Geofluids 2:109–126

    Article  CAS  Google Scholar 

  • Kolovayev DA (1976) Investigation of the concentration and statistical size distribution of wind-produced bubbles in the near-surface ocean. Oceanology (Engl Transl) 15:659–661

    Google Scholar 

  • Leifer I, Patro R (2002) The bubble mechanism for transport of methane from the shallow sea bad to the surface: a review and sensitive study. Continent Shelf Res 22:2409–2428

    Article  Google Scholar 

  • Leifer I, Patro RK, Bowyer P (2000a) A study on the temperature variation of rise velocity for large clean bubbles. J Atmos Oceanic Technol 17:1392–1402

    Article  Google Scholar 

  • Leifer I, Clark F, Chen RF (2000b) Modifications of the local environment by natural marine hydrocarbon seeps. Geophys Res Lett 27:3711–3714

    CAS  Google Scholar 

  • Linke P, Suess E (2001)(eds) Cruise Report SO 148: TECFLUX-II-2000. GEOMAR Report 98

  • Linke P, Suess E, Torres M, Martens V, Rugh WD, Ziebis W, Kulm LD (1994) In-situ measurements of fluid flow from cold seeps at the active continental margins. Deep Sea Res 41:721–739

    Article  Google Scholar 

  • Medwin H (1970) In-situ acoustic measurements of bubble populations in coastal ocean waters. J Geophys Res 75:599–611

    Google Scholar 

  • Merewether R, Olssen MS, Lonsdale P (1985) Acoustically detected hydrocarbon plumes rising from 2-km depths in the Guayamas Basin, Gulf of California. J Geophys Res 90:3075–3085

    CAS  Google Scholar 

  • Nützel B, Herwig H (1993) Measurements of acoustic backscattering of the near-surface layer. In: Ellis DD, Preston JR, Urban HG (eds) Ocean reverberation. Kluwer, Dordrecht, pp 97–102

  • Nützel B, Herwig H (1994) A two-frequency scatterometer for bubble scattering investigations. IEEE J Oceanic Eng 19:41–47

    Article  Google Scholar 

  • Nützel B, Herwig H (1995) Wind speed dependence of acoustic backscattering. J Geophys Res 100:24885–24892

    Google Scholar 

  • Paull CK, Chanton JP, Neumann AC, Coston JA, Martens CS (1992) Indicators of methane-derived carbonates and chemosynthetic organic carbon deposits: examples from the Florida Escarpment. Palaios 7:361–375

    Google Scholar 

  • Paull CK, Ill WU, Borowski WS, Spiess FN (1995) Methane-rich plumes on the Carolina continental rise: associations with gas hydrates. Geology 23:89–92

    Article  CAS  Google Scholar 

  • Rehder G, Brewer PW, Peltzer ET, Friedrich G (2002) Enhanced lifetime of methane bubble streams within the deep ocean. Geophys Res Lett 29:21–24

    Article  Google Scholar 

  • Ritger S, Carson B, Suess E (1987) Methane-derived authigenic carbonates formed by subduction-induced pore-water expulsion along the Oregon/Washington margin. Geol Soc Am Bull 98:147–156

    CAS  Google Scholar 

  • Soloviev V, Ginsburg GD (1994) Formation of submarine gas hydrates. Bull Geol Soc Denmark 41:86–94

    CAS  Google Scholar 

  • Suess E, Torres ME, Bohrmann G, Collier RW, Greinert J, Linke P, Rehder G, Trehu A, Wallmann K, Winckler G, Zuleger E (1999) Gas hydrate destabilization: enhanced dewatering, benthic material turnover and large methane plumes at the Cascadia convergent margin. Earth Planet Sci Lett 170:1–15

    CAS  Google Scholar 

  • Suess E, Torres ME, Bohrmann G, Collier RW, Rickert D, Goldfinger C, Linke P, Hauser A, Sahling H, Heeschen K, Jung C, Nakamura K, Greinert J, Pfannkuche O, Trehu A, Klinkhammer G, Whiticar MJ, Eisenhauer A, Teichert B, Elvert M (2001) Sea floor methane hydrates at Hydrate Ridge, Cascadia Margin. In: Paull CK, Dillon WP (eds) Natural gas hydrates: occurrence, distribution, and detection. Geophys Monogr 124:87–98

    Google Scholar 

  • Thorpe SA (1982) On the clouds of bubbles formed by breaking wind-waves in deep water and their role in air-sea gas transfer. Phil Trans R Soc Lond 304:155–210

    Google Scholar 

  • Thorpe SA (1986) Bubble clouds: a review of their detection by sonar, of related models, and of how Kv may be detected. In: Monahan EC, Mac Niocaill G (eds) Oceanic whitecaps. Reidel, Dordrecht, pp 57–67

  • Torres ME, McManus J, Hammond DE, de Angelis MA, Heeschen KU, Colbert SL, Tryon MD, Brown KM, Suess E (2002) Fluid and chemical fluxes in and out of sediments hosting methane hydrate deposits on Hydrate Ridge, OR. I: Hydrological provinces. Earth Planet Sci Lett 201:525–540

    Article  CAS  Google Scholar 

  • Tryon MD, Brown KM, Torres ME (2002) Fluid and chemical flux in and out of sediments hosting methane hydrate deposits on Hydrate Ridge, OR. II: Hydrological processes. Earth Planet Sci Lett 201:541–557

    Article  CAS  Google Scholar 

  • Urick RJ (1967) Principles of underwater sound for engineers. McGraw-Hill, New York

  • Vagle S, Farmer DM (1992) The measurement of bubble-size distributions by acoustical backscatter. J Atmos Oceanic Technol 9:630–644

    Article  Google Scholar 

  • Wallmann K, Linke P, Suess E, Bohrmann G, Sahlig H, Dählmann A, Lammers S, Greinert J, von Mirbach N (1997) Biogeochemical turnover and transport at cold vents of the Aleutian subduction zone. Geochim Cosmochim Acta 61:5209–5219

    CAS  Google Scholar 

  • Wever TF, Abegg F, Fiedler HM, Fechner G, Stender IH (1998) Shallow gas in the muddy sediments of Eckernförde Bay, Germany. Continent Shelf Res 18:1715–1739

    Article  Google Scholar 

  • Zimmermann S, Hughes RG, Flügel HJ (1997) The effect of methane seepage on the spatial distribution of oxygen and dissolved sulphide within a muddy sediment. Mar Geol 137:149–157

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank our colleagues at FWG (R. Jacobsen and M. Krüger) and GEOMAR (E. Sauter, S. Grandel, C. Jung) for their enthusiasm during the experiments, visual bubble-size measurements (M. Müller) and useful input (E. Hütten). We also thank Y. Artemov and A.G. Judd for critical and helpful comments in their reviews. Financial support for the development of the GasQuant system was provided by the Federal Ministry of Education and Research, Bonn, by grant 03G0565. This is publication GEOTECH-36 of the program GEOTECHNOLOGIEN of the BMBF and the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Greinert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greinert, J., Nützel, B. Hydroacoustic experiments to establish a method for the determination of methane bubble fluxes at cold seeps. Geo-Mar Lett 24, 75–85 (2004). https://doi.org/10.1007/s00367-003-0165-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-003-0165-7

Keywords

Navigation