Skip to main content
Log in

Paleoenvironment and sea-level change in the early Cretaceous Barents Sea—implications from near-shore marine sapropels

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

The late Volgian (early "Boreal" Berriasian) sapropels of the Hekkingen Formation of the central Barents Sea show total organic carbon (TOC) contents from 3 to 36 wt%. The relationship between TOC content and sedimentation rate (SR), and the high Mo/Al ratios indicate deposition under oxygen-free bottom-water conditions, and suggest that preservation under anoxic conditions has largely contributed to the high accumulation of organic carbon. Hydrogen index values obtained from Rock-Eval pyrolysis are exceptionally high, and the organic matter is characterized by well-preserved type II kerogen. However, the occurrence of spores, freshwater algae, coal fragments, and charred land-plant remains strongly suggests proximity to land. Short-term oscillations, probably reflecting Milankovitch-type cyclicity, are superimposed on the long-term trend of constantly changing depositional conditions during most of the late Volgian. Progressively smaller amounts of terrestrial organic matter and larger amounts of marine organic matter upwards in the core section may have been caused by a continuous sea-level rise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  • Århus N, Kelly SRA, Collins JSH, Sandy MR (1990) Systematic paleontology and biostratigraphy of two early Cretaceous condensed sections from the Barents Sea. Polar Res 8:165–194

    Google Scholar 

  • Arthur MA, Schlanger SO, Jenkyns HC (1987) The Cenomanian-Turonian oceanic anoxic event. II. Palaeoceanographic controls on organic-matter production and preservation. In: Brooks J, Fleet A (eds) Marine petroleum source rocks. Geol Soc Spec Publ 26:401–420

    Google Scholar 

  • Brekke HD, Dahlgren S, Nyland B, Magnus C (1999) The prospectivity of the Vøring and Møre basins on the Norwegian Sea continental margin. In: Fleet AJ, Boldy SAR (eds) Proc 5th Conf Petroleum Geology of Northwest Europe, 26–29 October 1997, London. Geol Soc Lond, vol 5, pp 261–274

  • Brumsack HJ (1980) Geochemistry of Cretaceous black shales from the Atlantic Ocean. Chem Geol 31:1–25

    CAS  Google Scholar 

  • Brumsack HJ (1988) Rezente CORG-reiche Sedimente als Schlüssel zum Verständnis fossiler Schwarzschiefer. Habilitationsschrift, University of Göttingen

  • Bugge T, Elvebakk G, Bakke S, Fanavoll S, Lippard S, Leith TL, Mangerud G, Möller N, Nilsson I, Rømuld A, Schou L, Vigran JO, Weiss HM, Århus N (1989) (eds) Shallow drilling Barents Sea 1988. Trondheim, Norway, IKU rep

  • Bugge T, Elvebakk G, Fanavoll S, Mangerud G, Smelror M, Weiss HM, Gjelberg J, Kristensen SE, Nilsen K (2002) Shallow stratigraphic drilling applied in hydrocarbon exploration of the Nordkapp Basin, Barents Sea. Mar Petrol Geol 19(1):13–37

    Article  CAS  Google Scholar 

  • De Graciansky PC, Brosse E, Deroo G, Herbin JP, Montadert L, Müller C, Sigal J, Schaaf A (1987) Organic-rich sediments and paleoenvironmental reconstructions of the Cretaceous North Atlantic. In: Brooks J, Fleet A (eds) Marine petroleum source rocks. Geol Soc Spec Publ 26:317–344

    Google Scholar 

  • Demaison GJ, Moore GT (1980) Anoxic environments and oil source bed genesis. Org Geochem 2:9–31

    CAS  Google Scholar 

  • Doré AG (1991) The structural foundation and evolution of Mesozoic seaways between Europe and the Arctic. In: Channel JET, Winterer EL, Jansa LF (eds) Paleogeography and paleoceanography of the Tethys. Palaeogeogr Palaeoclimatol Palaeoecol 87:441–492

    Google Scholar 

  • Dypvik H, Gudlaugsson ST, Tsikalas F, Attrep M Jr, Ferrell RE Jr, Krinsley DH, Mørk A, Faleide JI, Nagy J (1996) Mjølnir structure: an impact crater in the Barents Sea. Geology 24:779–782

    Article  CAS  Google Scholar 

  • Engleman EE, Jackson LL, Norton DR (1985) Determination of carbonate in geological materials by coulometric titration. Chem Geol 53:125–128

    CAS  Google Scholar 

  • Erbacher J, Huber BT, Norris RD, Markey M (2001) Increased thermohaline stratification as a possible cause for an ocean anoxic event in the Cretaceous period. Nature 409:325–327

    Article  CAS  PubMed  Google Scholar 

  • Espitalie J, Laporte JL, Madec M, Marquis F, Leplat P, Paulet J, Boutefeu A (1977) Source rock characterization method for petroleum exploration. In: Proc 9th Annu Offshore Technology Conf 3:439–443

    Google Scholar 

  • Füchtbauer H (ed) (1988) Sedimente und Sedimentgesteine, Sediment-Petrologie Teil II, 4. Auflage. Schweizerbart, Stuttgart

  • Gradstein FM, Agterberg FP, Ogg JG, Hardenbol J, van Veen P, Thierry J, Huang Z (1995) A Triassic, Jurassic and Cretaceous time scale. In: Berggren, WA, Kent DV, Aubry MP, Hardenbol J (eds) Geochronology, timescales and global stratigraphic correlation. SEPM Spec Publ 54:95–126

    Google Scholar 

  • Gudlaugsson ST (1993) Large impact crater in the Barents Sea. Geology 21:291–294

    Article  Google Scholar 

  • Hallam A, Wignall PB (1999) Mass extinctions and sea-level changes. Earth Sci Rev 48:217–250

    Article  Google Scholar 

  • Haq BU, Hardenbol J, Vail PR (1988) Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. In: Wilgus CK, Hastings BS, Kendall CGStC, Posamentier HW, Ross CA, Van Wagoner C (eds) Sea level changes: an integrated approach. Soc Econ Petrol Mineral Spec Publ 42:71–108

    Google Scholar 

  • Hardenbol J, Thierry J, Farley MB, Jacquin T, De Graciansky PC, Vail PR (1998) Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins. In: De Graciansky PC, Hardenbol J, Thierry J, Vail PR (eds) Mesozoic and Cenozoic sequence stratigraphy of European basins. Soc Sediment Geol Spec Publ 60:7–14

    Google Scholar 

  • Johansen SE, Ostisty BK, Birkeland Ø, Fedorovsky YF, Martirosjan VN, Bruun Christensen O, Cheredeev SI, Ignatenko EA, Margulis LS (1990) Hydrocarbon potential in the Barents Sea region; play distribution and potential. In: Vorren TO, Bergsager E, Dahl-Stamnes ØA, Holter E, Johansen B, Lie E, Lund TB (eds) Arctic geology and petroleum potential. Proc Norwegian Petroleum Society Conf. NPF Spec Publ 2:273–320

    Google Scholar 

  • Langrock U, Stein R (2001) Organic matter preservation and paleoenvironmental implications for Lower Cretaceous marine sapropels from the Norwegian and Barents Sea shelf. European Union of Geosciences EUG XI J Conf Abstr 6:196–197

    Google Scholar 

  • Larsen RM, Fjaeran T, Skarpnes O (1990) Hydrocarbon potential of the Norwegian Barents Sea based on recent well results. In: Vorren TO, Bergsager E, Dahl-Stamnes ØA, Holter E, Johansen B, Lie E, Lund TB (eds) Arctic geology and petroleum potential. Proc Norwegian Petroleum Society Conf. NPF Spec Publ 2:321–331

    Google Scholar 

  • Leith TL, Weiss HM, Mørk A, Århus N, Elvebakk G, Embry AF, Brooks PW, Steward KR, Pchelina TM, Brø EG, Verba ML, Danyushevskaya A, Borisov AV (1990) Mesozoic hydrocarbon source-rocks of the Arctic region, In: Vorren TO, Bergsager E, Dahl-Stamnes ØA, Holter E, Johansen B, Lie E, Lund TB (eds) Arctic geology and petroleum potential. Proc Norwegian Petroleum Society Conf. NPF Spec Publ 2:1–25

    Google Scholar 

  • Littke R, Baker DR, Rullkötter J (1997) Deposition of petroleum source rocks. In: Welte HD, Horsfield B, Baker DR (eds) Petroleum and basin evolution, insights from petroleum geochemistry. Geology and basin modeling. Springer, Berlin Heidelberg New York, pp 273–333

  • Meyers P (1997) Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org Geochem 27:213–250

    Article  CAS  Google Scholar 

  • Mutterlose J, Brumsack HJ, Floegel S, Hay WW, Klein C, Langrock U, Lipinski M, Ricken W, Soeding E, Stein R, Swientek O (2003) The Norwegian–Greenland Seaway: a key area for understanding Late Jurassic to Early Cretaceous paleoenvironments. Paleoceanography (in press)

  • Peters KE (1986) Guidelines for evaluating petroleum source rock using programmed pyrolysis. Am Assoc Petrol Geol Bull 70:318–329

    Google Scholar 

  • Price GD, Ruffell AH, Jones CE, Kalin RM, Mutterlose J (2000) Isotopic evidence for temperature variation during the Early Cretaceous (late Ryazanian–mid Hauterivian). Geol Soc Lond 155:335–343

    Google Scholar 

  • Schlanger SO, Jenkyns HC (1976) Cretaceous oceanic anoxic events: causes and consequences. Geol Mijnbouw 55:179–184

    Google Scholar 

  • Sheridan RE (1987) Pulsation tectonics as the control of North Atlantic paleoceanography. In: Summerhayes CP, Shackleton NJ (eds) North Atlantic paleoceanography. Geol Soc Spec Publ 21:255–275

    Google Scholar 

  • Sinninghe Damsté JS, Köster J (1998) An euxinic southern North Atlantic Ocean during the Cenomanian/Turonian oceanic anoxic event. Earth Planet Sci Lett 158:165–173

    Article  Google Scholar 

  • Smelror M, Mørk A, Monteil E, Rutledge D, Leereveld H (1998) The Klippfisk Formation—a new lithostratigraphic unit of Lower Cretaceous platform carbonates on the Western Barents Shelf. Polar Res 17:181–202

    Google Scholar 

  • Smelror M, Mørk A, Mørk MBE, Weiss HM, Løseth H (2001) Middle Jurassic–Lower Cretaceous transgressive-regressive sequences and facies distribution off Troms, northern Norway. In: Martinsen OJ, Dreyer T (eds) Sedimentary environments offshore Norway—Paleozoic to Recent. NPF Spec Publ 10:211–232

    Google Scholar 

  • Stein R (1990) Organic carbon content/sedimentation rate relationship and its paleoenvironmental significance for marine sediments. Geo-Mar Lett 10:37–44

    Google Scholar 

  • Stein R (1991) Accumulation of organic carbon in marine sediments. Springer, Berlin Heidelberg New York, Lecture Notes in Earth Sciences 34

  • Stein R, Rullkötter J, Welte DH (1986) Accumulation of organic-carbon-rich sediments in the late Jurassic and Cretaceous Atlantic Ocean—A synthesis. Chem Geol 56:1–32

    CAS  Google Scholar 

  • Street C, Brown PR (2000) Paleobiogeography of Early Cretaceous (Berriasian–Barremian) calcareous nannoplankton. Mar Micropaleontol 39:265–291

    Article  Google Scholar 

  • Taylor GH, Teichmüller M, Davies A, Diessel CFK, Littke R, Robert P (eds) (1998) Organic petrology. Bornträger, Berlin

  • Tsikalas F, Gudlaugsson ST, Faleide JI (1998) Collapse, infilling, and postimpact deformation at the Mjølnir impact structure, Barents Sea. Geol Soc Am Bull 110(5):537–552

    Article  Google Scholar 

  • Twichell SC, Meyers PA, Diester-Haass L (2002) Significance of high C/N ratios in organic carbon-rich Neogene sediments under the Benguela Current upwelling system. Org Geochem 33:715–722

    Article  Google Scholar 

  • Van de Schootbrugge B, Föllmi KB, Bulot LG, Burns SJ (2000) Paleoceanographic changes during the early Cretaceous (Valanginian–Hauterivian): evidence from oxygen and carbon stable isotopes. Earth Planet Sci Lett 181:15–31

    Article  Google Scholar 

  • Waples DW, Sloan JR (1980) Carbon and nitrogen diagenesis in deep sea sediments. Geochim Cosmochim Acta 44(10):1463–1470

    CAS  Google Scholar 

  • Wedepohl KH (1970) Environmental influences on the chemical composition of shales and clays. In: Ahrens LH, Press F, Runcorn SK, Urey HC (eds) Physics and chemistry of the Earth. Pergamon, Oxford, pp 307–333

  • Wilkin RT, Barnes HL, Brantley SL (1996) The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions. Geochim Cosmochim Acta 60(20):3897–3912

    CAS  Google Scholar 

  • Wilkin RT, Arthur MA, Dean WE (1997) History of water-column anoxia in the Black Sea indicated by pyrite framboid size distributions. Earth Planet Sci Lett 148:517–525

    Article  CAS  Google Scholar 

  • Worsley D, Johansen R, Kristensen SE (1988) The Mesozoic and Cenozoic succession of Tromsøflaket. In: Dalland A, Worsley D, Ofstad K (eds) A lithostratigraphic scheme for the Mesozoic and Cenozoic succession offshore mid- and northern Norway. Norwegian Petrol Directorate Bull 4:42–65

    Google Scholar 

  • Ziegler PA (1988) Evolution of the Arctic–North Atlantic and the western Tethys. AAPG Mem 43

Download references

Acknowledgements

Financial support by the German Science Foundation (grant STE 412-13/1) is gratefully acknowledged. Sintef Petroleum Research, Norway, kindly provided access to sensitive core material and unpublished data. We thank Dr. Tom Wagner and two anonymous reviewers for their critical comments to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Langrock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langrock, U., Stein, R., Lipinski, M. et al. Paleoenvironment and sea-level change in the early Cretaceous Barents Sea—implications from near-shore marine sapropels. Geo-Mar Lett 23, 34–42 (2003). https://doi.org/10.1007/s00367-003-0122-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-003-0122-5

Keywords

Navigation