Skip to main content
Log in

Differential gene expression in the liver of the African lungfish, Protopterus annectens, after 6 days of estivation in air

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

This study aimed to identify estivation-specific gene clusters through the determination of differential gene expressions in the liver of Protopterus annectens after 6 days of estivation in a mucus cocoon in air (normoxia) using suppression subtractive hybridization polymerase chain reaction. Our results demonstrated that 6 days of estivation in normoxia led to up-regulation of mRNA expressions of several genes related to urea synthesis, including carbamoyl phosphate synthetase (Cps), argininosuccinate synthetase and glutamine synthetase. They indicate that increased urea synthesis, despite being energy-intensive, is an important adaptive response of estivation. They also offer indirect support to the proposition that urea synthesis in this lungfish involved a Cps that uses glutamine as a substrate. In addition, up- or down-regulation of several gene clusters occurred in the liver of P. annectens after 6 days of estivation in normoxia. These estivation-specific genes were involved in the prevention of clot formation, activation of the lectin pathway for complement activation, conservation of minerals (e.g. iron and copper) and increased production of hemoglobin beta. Since there were up- and down-regulation of mRNA expressions of genes related to ribosomal proteins and translational elongation factors, there could be simultaneous increases in protein degradation and protein synthesis during the first 6 days (the induction phase) of estivation, confirming the importance of reconstruction of protein structures in preparation for the maintenance phase of estivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahmad N, Dube B, Agarwal GP, Dube RK (1979) Comparative studies of blood coagulation in hibernating and non-hibernating frogs (Rana tigrina). Thromb Haemost 42:959–964

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Amelio D, Garofalo F, Loong AM, Wong WP, Ip YK, Tota B, Cerra MC (2008) Differential NOS expression in the freshwater and aestivating lungfish Protopterus dolloi: heart versus kidney readjustments. Nitric Oxide 18:1–10

    Article  PubMed  CAS  Google Scholar 

  • Ballantyne JS, Frick NT (2010) Lungfish metabolism. In: Jorgensen JM, Joss J (eds) The biology of lungfishes. Science Publishers, New Hampshire, pp 301–335

    Google Scholar 

  • Burlington RF, Klain GJ (1967) Gluconeogenesis during hibernation and arousal from hibernation. Comp Biochem Physiol 22:701–708

    Article  PubMed  CAS  Google Scholar 

  • Campbell CH, Brown R, Linder MC (1981) Circulating ceruloplasmin is an important source of copper for normal and malignant animal cells. Biochim Biophys Acta 678:27–38

    Article  PubMed  CAS  Google Scholar 

  • Carlisky NJ, Barrio A (1972) Nitrogen metabolism of the South American lungfish Lepidosiren paradoxa. Comp Biochem Physiol 41B:857–873

    Google Scholar 

  • Chasteen ND (1998) Uptake, storage, and release of iron. Met Ions Biol Syst 35:479–514

    PubMed  CAS  Google Scholar 

  • Chew SF, Ong TF, Ho L, Tam WL, Loong AM, Hiong KC, Wong WP, Ip YK (2003) Urea synthesis in the African lungfish Protopterus dolloi: hepatic carbamoyl phosphate synthetase III and glutamine synthetase are up regulated by 6 days of aerial exposure. J Exp Biol 206:3615–3624

    Article  PubMed  Google Scholar 

  • Chew SF, Chan NKY, Tam WL, Loong AM, Hiong KC, Ip YK (2004) Nitrogen metabolism in the African lungfish (Protopterus dolloi) aestivating in a mucus cocoon on land. J Exp Biol 207:777–786

    Article  PubMed  CAS  Google Scholar 

  • Cousins RJ (1985) Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin. Physiol Rev 65:238–309

    PubMed  CAS  Google Scholar 

  • DeLaney RG, Lahiri S, Fishman AP (1974) Aestivation of the African lungfish Protopterus aethiopicus: cardiovascular and respiratory functions. J Exp Biol 61:111–128

    PubMed  CAS  Google Scholar 

  • Delaney RG, Shub G, Fishman AP (1976) Hematologic observations on the aquatic and estivating African lungfish, Protopterus aethiopicus. Copiea 3:423–434

    Article  Google Scholar 

  • Demas GE, Chefer V, Talan MI, Nelson RJ (1997) Metabolic costs of mounting and antigen-stimulated immune response in adult and aged C57BL/6J mice. Am J Physiol 273:R1631–R1637

    PubMed  CAS  Google Scholar 

  • Denko CW (1979) Protective role of ceruloplasmin in inflammation. Inflamm Res 9:333–336

    CAS  Google Scholar 

  • Dobrzyn P, Sampath H, Dobrzyn A, Miyazaki M, Ntambi JM (2007) Loss of stearoyl-CoA desaturase 1 inhibits fatty acid oxidation and increases glucose utilization in the heart. Am J Physiol Endocrinol Metab 294:E357–E364

    Article  PubMed  Google Scholar 

  • Douglas N, Giband M, Altosaar I, Storey KB (1994) Anoxia induces changes in translatable mRNA populations in turtle organs: a possible adaptive strategy for anaerobiosis. J Comp Physiol B 164:405–414

    Article  PubMed  CAS  Google Scholar 

  • Drazen DL, Kreigsfeld LJ, Schneider JE, Nelson RJ (2000) Leptin, but not immune function, is linked to reproductive responsiveness to photoperiod. Am J Physiol 278:R1401–R1407

    CAS  Google Scholar 

  • Fraser KPP, Houlihan DF, Lutz PL, Leone-Kabler S, Manuel L, Brechin JG (2001) Complete suppression of protein synthesis during anoxia with no post-anoxia protein synthesis debt in the red-eared slider turtle Trachemys scripta elegans. J Exp Biol 204:4353–4360

    PubMed  CAS  Google Scholar 

  • Frick NT, Bystriansky JS, Ip YK, Chew SF, Ballantyne JS (2008) Carbohydrate and amino acid metabolism in fasting and aestivating African lungfish (Protopterus dolloi). Comp Biochem Physiol 151:85–92

    Article  Google Scholar 

  • Fujita T, Matsushita M, Endo Y (2004) The lectin-complement pathway—its role in innate immunity and evolution. Immunol Rev 198:185–202

    Article  PubMed  CAS  Google Scholar 

  • Gingras AC, Raught B, Sonenbert N (1999) eIF4 initation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Ann Rev Biochem 68:913–963

    Article  PubMed  CAS  Google Scholar 

  • Green CJ, Brosnan JT, Fuller BJ, Lowry M, Stubbs M, Ross BD (1984) Effect of hibernation on liver and kidney metabolism in 13-lined ground squirrels. Comp Biochem Physiol B 79:167–171

    Article  PubMed  CAS  Google Scholar 

  • Gregory PT (1982) Reptilian hibernation. In: Gans C, Pough FH (eds) Biology of the reptilia. Physiology and Physiological Ecology, vol 13. Academic Press, New York, pp 53–154

    Google Scholar 

  • Grohme M, Frohme M, Mali B (2009) Open architecture PCR-based methods for differential gene expression analysis. Curr Pharm Anal 5:1–9

    Article  CAS  Google Scholar 

  • Harrison PM, Arosio P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta 1275:161–203

    Article  PubMed  Google Scholar 

  • Henkin R (1974) Metal–albumin–amino acid in interactions: chemical and physiological relationships. In: Friedman M (ed) Protein–metal interactions. Plenum, New York, pp 299–328

    Google Scholar 

  • Hochachka PW, Guppy M (1987) Estivators. In: Hochachka PW, Guppy M (eds) Metabolic arrest and the control of biological time. Harvard University Press, Cambridge, pp 101–112

    Google Scholar 

  • Icardo JM, Amelio D, Garofalo F, Colvee E, Cerra MC, Wong WP, Tota B, Ip YK (2008) The structural characteristics of the heart ventricle of the African lungfish Protopterus dolloi: freshwater and aestivation. J Anat 213:106–119

    Article  PubMed  Google Scholar 

  • Ip YK, Chew SF (2010) Nitrogen metabolism and excretion during aestivation. In: Navas CA, Carvalho JE (eds) Aestivation, molecular and physiological aspects. Springer, Berlin, pp 63–94

    Google Scholar 

  • Ip YK, Yeo PJ, Loong AM, Hiong KC, Wong WP, Chew SF (2005) The interplay of increased urea synthesis and reduced ammonia production in the African lungfish Protopterus aethiopicus during 46 days of aestivation in a mucus cocoon. J Exp Zool A 303:1054–1065

    Article  Google Scholar 

  • Janssens PA, Cohen PP (1968a) Biosynthesis of urea in the estivating African lungfish and in Xenopus laevis under conditions of water shortage. Comp Biochem Physiol 24:887–898

    Article  PubMed  CAS  Google Scholar 

  • Janssens PA, Cohen PP (1968b) Nitrogen metabolism in the African lungfish. Comp Biochem Physiol 24:879–886

    Article  PubMed  CAS  Google Scholar 

  • Linn S (1998) DNA damage by iron and hydrogen peroxide in vitro and in vivo. Drug Metab Rev 30:313–326

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmitten TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Loong AM, Hiong KC, Lee SML, Wong WP, Chew SF, Ip YK (2005) Ornithine–urea cycle and urea synthesis in African lungfishes, Protopterus aethiopicus and Protopterus annectens, exposed to terrestrial conditions for 6 days. J Exp Zool A 303:354–365

    Article  Google Scholar 

  • Loong AM, Tan JYL, Hiong KC, Wong WP, Chew SF, Ip YK (2007) Defense against environmental ammonia toxicity in the African lungfish, Protopterus aethiopicus: bimodal breathing, skin ammonia permeability and urea synthesis. Aquat Toxicol 85:76–86

    Article  PubMed  CAS  Google Scholar 

  • Loong AM, Ang SF, Wong WP, Pörtner HO, Bock C, Wittig R, Bridges CR, Chew SF, Ip YK (2008a) Effects of hypoxia on the energy status and nitrogen metabolism of African lungfish during aestivation in a mucus cocoon. J Comp Physiol B 178:853–865

    Article  PubMed  CAS  Google Scholar 

  • Loong AM, Pang CYM, Hiong KC, Wong WP, Chew SF, Ip YK (2008b) Increased urea synthesis and/or suppressed ammonia production in the African lungfish, Protopterus annectens: aestivation in air versus aestivation in mud. J Comp Physiol B 178:351–363

    Article  PubMed  CAS  Google Scholar 

  • Marceau N, Aspin N (1972) Distribution of ceruloplasmin-bound 67Cu in the rat. Am J Physiol 222:106–110

    PubMed  CAS  Google Scholar 

  • Mathews MB, Sonenberg N, Hershey JWB (2000) Origins and principles of translational control. In: Sonenberg N, Hershey JWB, Mathews MB (eds) Translational control of gene expression. Cold Spring Harbor laboratory Press, New York, pp 1–32

    Google Scholar 

  • Moret Y, Schmid-Hempel P (2000) Survival for immunity: the price of immune system activation for bumblebee workers. Science 290:1166–1168

    Article  PubMed  CAS  Google Scholar 

  • Neves JV, Wilson JM, Rodrigues PNS (2009) Transferrin and ferritin response to bacterial infection: the role of the liver and brain in fish. Dev Comp Immunol 33:848–857

    Article  PubMed  CAS  Google Scholar 

  • Ojeda JL, Wong WP, Ip YK, Icardo JM (2008) The renal corpuscle of the African lungfish Protopterus dolloi: structural, histochemical and immunofluorescence modification during aestivation. Anat Rec 291:1156–1172

    Article  Google Scholar 

  • Orino K, Lehman L, Tsuji Y, Ayaki H, Torti SV, Torti FM (2001) Ferritin and the response to oxidative stress. Biochem J 357:241–247

    Article  PubMed  CAS  Google Scholar 

  • Owen CA (1965) Metabolism of radiocopper (Cu64) in the rat. Am J Physiol 209:900–904

    PubMed  CAS  Google Scholar 

  • Pakay JL, Hobbs AA, Kimball SR, Guppy M (2003) The role of eukaryotic initiation factor 2α during the metabolic depression associated with estivation. J Exp Biol 206:2363–2371

    Article  PubMed  CAS  Google Scholar 

  • Peterson CC, Stone PA (2000) Physiological capacity for estivation of the Sonoran mud turtle, Kinosternon sonoriense. Copeia 3:684–700

    Article  Google Scholar 

  • Pivorun EB, Sinnamon WB (1981) Blood coagulation studies in normothermic, hibernating and aroused Spermophilus franklini. Cryobiol 18:515–520

    Article  CAS  Google Scholar 

  • Price GC, Thompson SA, Kam PCA (2004) Tissue factor and tissue factor pathway inhibitor. Anaesthesia 59:483–492

    Article  PubMed  CAS  Google Scholar 

  • Rudra D, Warner JR (2004) What better measure than ribosome synthesis? Genes Dev 18:2431–2436

    Article  PubMed  CAS  Google Scholar 

  • Sim RB, Laich A (2000) Serum proteases of the complement system. Biochem Soc Trans 28:545–550

    PubMed  CAS  Google Scholar 

  • Smith HW (1930) Metabolism of the lungfish Protopterus aethiopicus. J Biol Chem 88:97–130

    CAS  Google Scholar 

  • Smith HW (1935) The metabolism of the lungfish II. Effect of feeding meat on metabolic rate. J Cell Comp Physiol 6:335–349

    Article  CAS  Google Scholar 

  • Storey KB (2002) Life in the slow lane: molecular mechanisms of estivation. Comp Biochem Physiol A 133:733–754

    Article  Google Scholar 

  • Storey KB (2004) Molecular mechanisms of anoxia tolerance. Int Congr Ser 1275:47–54

    Article  Google Scholar 

  • Storey KB, Storey JM (2004) Mammalian hibernation: biochemical adaptation and gene expression. In: Storey KB (ed) Functional metabolism regulation and adaptation. John Wiley & Sons Inc, New York, pp 383–471

    Chapter  Google Scholar 

  • Storey KB, Storey JM (2010) Metabolic regulation and gene expression during aestivation. In: Navas CA, Carvalho JE (eds) Aestivation, molecular and physiological aspects. Springer, Berlin, pp 25–46

    Google Scholar 

  • Svihla A, Bowman HR, Ritenour R (1951) Prolongation of clotting time in dormant estivating mammals. Science 114:298–299

    Article  PubMed  CAS  Google Scholar 

  • Tashima LS, Adelstein SJ, Lyman CP (1970) Radioglucose utilization by active, hibernating and arousing ground squirrels. Am J Physiol 218:303

    PubMed  CAS  Google Scholar 

  • Theil EC (1990) The ferritin family of iron storage proteins. Adv Enzymol Relat Areas Mol Biol 63:421–449

    PubMed  CAS  Google Scholar 

  • Torti FM, Torti SV (2002) Regulation of ferritin genes and protein. Blood 99:3505–3516

    Article  PubMed  CAS  Google Scholar 

  • Ultsch GR (1989) Ecology and physiology of hibernation and overwintering among freshwater fishes, turtles, and snakes. Biol Rev 64:435–516

    Article  Google Scholar 

  • Walport MJ (2001a) Complement—first of two parts. N Engl J Med 344:1058–1066

    Article  PubMed  CAS  Google Scholar 

  • Walport MJ (2001b) Complemnt—second of two parts. N Engl J Med 344:1140–1144

    Article  PubMed  CAS  Google Scholar 

  • Whitehead A, Crawford DL (2005) Variation in tissue-specific gene expression among natural populations. Genome Biol 6:R13

    Article  PubMed  Google Scholar 

  • Withers PC, Cooper CE (2010) Metabolic depression: a historical perspective. In: Navas CA, Carvalho JE (eds) Aestivation, molecular and physiological aspects. Springer, Berlin, pp 25–46

    Google Scholar 

Download references

Acknowledgments

This project was supported by the Ministry of Education of the Republic of Singapore through a grant (R-154-000-429-112) administered to YK Ip.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. K. Ip.

Additional information

Communicated by I.D. Hume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loong, A.M., Hiong, K.C., Wong, W.P. et al. Differential gene expression in the liver of the African lungfish, Protopterus annectens, after 6 days of estivation in air. J Comp Physiol B 182, 231–245 (2012). https://doi.org/10.1007/s00360-011-0613-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-011-0613-z

Keywords

Navigation