Skip to main content

Advertisement

Log in

Does habitat fragmentation cause stress in the agile antechinus? A haematological approach

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Although the vertebrate stress response is essential for survival, frequent or prolonged stress responses can result in chronic physiological stress, which is associated with a suite of conditions that can impair survivorship and reproductive output. Anthropogenic habitat fragmentation and degradation are potential stressors of free-living vertebrates, and in theory could result in chronic stress. To address this issue, we compared haematological indicators of stress and condition in agile antechinus (Antechinus agilis) populations in 30 forest fragments and 30 undisturbed, continuous forest sites (pseudofragments) in south-eastern Australia over 2 years. In peripheral blood, the total leucocyte count was lower and the neutrophil/lymphocyte ratio and percentage of eosinophils in the total leucocyte population was higher in fragment than pseudofragment populations, indicating that fragment populations were probably experiencing higher levels of stress hormone-mediated and/or parasite infection-related chronic physiological stress. The total erythrocyte count and haematocrit were higher and mean erythrocyte haemoglobin content was lower in fragment than pseudofragment populations. This suggests that fragment populations showed possible signs of regenerative anaemia, a syndrome associated with elevated hypothalamus–pituitary–adrenal axis mediated stress. However, mean erythrocyte volume was also lower in fragments, and red blood cell distribution width did not differ between the study populations, findings which were not consistent with this diagnosis. Whole blood and mean cell haemoglobin concentrations were similar in fragment and pseudofragment populations. We suggest that where anthropogenic activity results in habitat fragmentation and degradation, chronic stress could contribute to a decline in agile antechinus populations. The broader implication is that chronic stress could be both symptomatic of, and contributing to, decline of some vertebrate populations in anthropogenically fragmented and degraded habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Austad SN (1996) The uses of intraspecific variation in aging research. Exp Gerontol 31:453–463

    Article  PubMed  CAS  Google Scholar 

  • Australian Bureau of Meteorology 2009. Climate statistics for Australian sites. In: (http://www.bom.gov.au/)

  • Baker ML, Gemmell RT (1999) Physiological changes in the brushtail possum (Trichosurus vulpecula) following relocation from Armidale to Brisbane, Australia. J Exp Zool 284:42–49

    Article  PubMed  CAS  Google Scholar 

  • Baker ML, Gemmell E, Gemmell RT (1998) Physiological changes in brushtail possums, Trichosurus vulpecula, transferred from the wild to captivity. J Exp Zool 280:203–212

    Article  PubMed  CAS  Google Scholar 

  • Banks PB, Dickman CR (2000) Effects of winter food supplementation on reproduction, body mass, and numbers of small mammals in montane Australia. Can J Zool 78:1775–1783

    Article  Google Scholar 

  • Banks SC, Finlayson GR, Lawson SJ, Lindenmayer DB, Paetkau D, Ward SJ, Taylor AC (2005) The effects of habitat fragmentation due to forestry plantation establishment on the demography and genetic variation of a marsupial carnivore, Antechinus agilis. Biol Conserv 122:581–597

    Article  Google Scholar 

  • Barker IK, Beveridge I, Bradley AJ, Lee AK (1978) Observations on spontaneous stress-related mortality among males of the Dasyurid marsupial Antechinus stuartii Macleay. Aust J Zool 26:435–447

    Article  Google Scholar 

  • Barnett JL (1973) A stress response in Antechinus stuartii (Macleay). Aust J Zool 21:501–513

    Article  CAS  Google Scholar 

  • Barnett JL, How RA, Humphreys WF (1979) Blood parameters in natural populations of Trichosurus species (Marsupialia: Phalangeridae). II. Influence of habitat and population strategies of T. caninus and T. vulpecula. Aust J Zool 27:927–938

    Article  Google Scholar 

  • Bearhop G, Orr F (1999) Mean corpuscular volume (MCV) as a measure of condition in birds. Ecol Lett 2:352–356

    Article  Google Scholar 

  • Beldomenico PM, Telfer S, Gebert S, Lukomski L, Bennett M, Begon M (2008a) The dynamics of health in wild field vole populations: a haematological perspective. J Anim Ecol 77:984–997

    Article  PubMed  Google Scholar 

  • Beldomenico PM, Telfer S, Gebert S, Lukomski L, Bennett M, Begon M (2008b) Poor condition and infection: a vicious circle in natural populations. Proc Royal Soc Lond Series B Biol Sci (Lond) 275:1753–1759

    Article  Google Scholar 

  • Bennett AF (1990) Habitat corridors and the conservation of small mammals in a fragmented forest environment. Landscape Ecol 4:109–122

    Article  Google Scholar 

  • Bennett A, Hayssen V (2010) Measuring cortisol in hair and saliva from dogs: coat color and pigment differences. Domest Anim Endocrinol 39:171–180

    Article  PubMed  CAS  Google Scholar 

  • Bignold LP (1995) The eosinophil leukocyte: controversies of recruitment and function. Cell Mol Life Sci 51:317–327

    Article  CAS  Google Scholar 

  • Bradley AJ (2003) Stress, hormones and mortality in small carnivorous marsupials. In: Jones M, Dickman CR, Archer M (eds) Predators with pouches: the biology of carnivorous marsupials. CSIRO Publishing, Collingwood, pp 250–263

    Google Scholar 

  • Braithwaite RW, Lee AK (1979) A mammalian example of semelparity. Am Nat 113:151–155

    Article  Google Scholar 

  • Campbell TW (1995) Avian hematology and cytology. Iowa State University Press, Ames

    Google Scholar 

  • Catling PC, Burt RJ, Forrester RI (1998) Models of the distribution and abundance of ground-dwelling mammals in the eucalypt forests of south-eastern New South Wales. Wildl Res 25:449–466

    Article  Google Scholar 

  • Chapman CA, Wasserman MD, Gillespie TR, Speirs ML, Lawes MJ, Saj TL, Ziegler TE (2006) Do food availability, parasitism, and stress have synergistic effects on red colobus populations living in forest fragments? Am J Phys Anthropol 131:525–534

    Article  PubMed  Google Scholar 

  • Cheal PD, Lee AK, Barnett JL (1976) Changes in the haematology of Antechinus stuartii (Marsupialia), and their association with male mortality. Aust J Zool 24:299–311

    Article  Google Scholar 

  • Claridge AW, Tennant P, Chick R, Barry SC (2008) Factors influencing the occurrence of small ground-dwelling mammals in southeastern mainland Australia. J Mammal 89:916–923

    Article  Google Scholar 

  • Clark P, Adlard RD (2004) Haematology of Australian mammals. Csiro

  • Cockburn A, Lazenby-Cohen KA (1992) Use of nest trees by Antechinus stuartii, a semelparous lekking marsupial. J Zool (Lond) 226:657–680

    Article  Google Scholar 

  • Colombelli-Négrel D, Kleindorfer S (2008) In superb fairy wrens (Malurus cyaneus), nuptial males have more blood parasites and higher haemoglobin concentration than eclipsed males. Aust J Zool 56:117–121

    Article  Google Scholar 

  • Crawley MJ (2007) The R book. Wiley, Chichister

    Book  Google Scholar 

  • Davies JB, Oates AM, Trumbull-Ward AV (2002) Ecological vegetation class mapping at 1:25,000 in Gippsland: final report. Victorian Department of Natural Resources and Environment, Melbourne

    Google Scholar 

  • Davis GS, Anderson KE, Carroll AS (2000) The effects of long-term caging and molt of single comb white leghorn hens on heterophil to lymphocyte ratios, corticosterone and thyroid hormones. Poult Sci 79:514–518

    PubMed  CAS  Google Scholar 

  • Davis AK, Maney DL, Maerz JC (2008) The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Funct Ecol 22:760–772

    Article  Google Scholar 

  • Delehanty B, Boonstra R (2009) Impact of live trapping on stress profiles of Richardson’s ground squirrel (Spermophilus richardsonii). Gen Comp Endocrinol 160:176–182

    Article  PubMed  CAS  Google Scholar 

  • Dhabhar F, McEwen B (1997) Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: a potential role for leukocyte trafficking. Brain Behav Immun 11:286–306

    Article  PubMed  CAS  Google Scholar 

  • Dhabhar FS, Miller AH, Stein M, McEwen BS, Spencer RL (1994) Diurnal and acute stress-induced changes in distribution of peripheral blood leukocyte subpopulations. Brain Behav Immun 8:66–79

    Article  PubMed  CAS  Google Scholar 

  • Dhabhar FS, Miller AH, McEwen BS, Spencer RL (1995) Effects of stress on immune cell distribution: dynamics and hormonal mechanisms. J Immunol 154:5511–5527

    PubMed  CAS  Google Scholar 

  • Dhabhar FS, Miller AH, McEwen BS, Spencer RL (1996) Stress-induced changes in blood leukocyte distribution. Role of adrenal steroid hormones. J Immunol 157:1638–1644

    PubMed  CAS  Google Scholar 

  • Dickman CR, Parnaby HE, Crowther MS, King DH (1998) Antechinus agilis (Marsupialia : Dasyuridae), a new species from the A. stuartii complex in south-eastern Australia. Aust J Zool 46:1–26

    Article  Google Scholar 

  • Dorshkind K (1990) Regulation of hemopoiesis by bone marrow stromal cells and their products. Annu Rev Immunol 111:37

    Google Scholar 

  • Dunstan CE, Fox BJ (1996) The effects of fragmentation and disturbance of rainforest on ground-dwelling small mammals on the Robertson Plateau, New South Wales, Australia. J Biogeogr 23:187–201

    Article  Google Scholar 

  • Engqvist L (2005) The mistreatment of covariate interaction terms in linear model analyses of behavioural and evolutionary ecology studies. Anim Behav 70:967–971

    Article  Google Scholar 

  • Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD, Cawthon RM (2004) Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci USA 101:17312–17315

    Article  PubMed  CAS  Google Scholar 

  • Ewers RM, Didham RK (2005) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142

    Article  PubMed  Google Scholar 

  • Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Glob Ecol Biogeogr 16:265–280

    Article  Google Scholar 

  • Fisher JW, Crook JJ (1962) Influence of several hormones on erythropoiesis and oxygen consumption in the hypophysectomized rat. Blood 19:557–565

    PubMed  CAS  Google Scholar 

  • Fletcher QE, Boonstra R (2006) Impact of live trapping on the stress response of the meadow vole (Microtus pennsylvanicus). J Zool 270:473–478

    Article  Google Scholar 

  • Good T, Khan MZ, Lynch JW (2003) Biochemical and physiological validation of a corticosteroid radioimmunoassay for plasma and fecal samples in oldfield mice (Peromyscus polionotus). Physiol Behav 80:405–411

    Article  PubMed  CAS  Google Scholar 

  • Hainsworth FR, Stricker EM, Epstein AN (1968) Water metabolism of rats in the heat: dehydration and drinking. Am J Physiol 214:983–989

    PubMed  CAS  Google Scholar 

  • Holland GJ, Bennett AF (2007) Occurrence of small mammals in a fragmented landscape: the role of vegetation heterogeneity. Wildl Res 34:387–397

    Article  Google Scholar 

  • Holland GJ, Bennett AF (2009) Differing responses to landscape change: implications for small mammal assemblages in forest fragments. Biodivers Conserv 18:2997–3016

    Article  Google Scholar 

  • Homan RN, Regosin JV, Rodrigues DM, Reed JM, Windmiller BS, Romero LM (2003) Impacts of varying habitat quality on the physiological stress of spotted salamanders (Ambystoma maculatum). Anim Conserv 6:11–18

    Article  Google Scholar 

  • Homyack JA (2010) Evaluating habitat quality of vertebrates using conservation physiology tools. Wildl Res 37:332–342

    Article  Google Scholar 

  • Janin A, Lena JP, Joly P (2011) Beyond occurrence: Body condition and stress hormone as integrative indicators of habitat availability and fragmentation in the common toad. Biol Conserv. doi:10.1016/j.biocon.2010.12.009

  • Johnstone CP, Reina RD, Lill A (2010) Impact of anthropogenic habitat fragmentation on population health in a small, carnivorous marsupial. J Mammal 91:1332–1341

    Article  Google Scholar 

  • Johnstone CP, Lill A, Reina RD (2011) Response of the agile antechinus to habitat edge, configuration and condition in fragmented forest. PLoS One. Accepted pending revision

  • Keay JM, Singh J, Gaunt MC, Kaur T (2006) Fecal glucocorticoids and their metabolites as indicators of stress in various mammalian species: a literature review. J Zoo Wildl Med 37:234–244

    Article  PubMed  Google Scholar 

  • Kelly LT, Bennett AF (2008) Habitat requirements of the yellow-footed antechinus (Antechinus flavipes) in box-ironbark forest, Victoria, Australia. Wildl Res 35:128–133

    Article  Google Scholar 

  • King JM, Bradshaw SD (2010) Stress in an Island kangaroo? The Barrow Island euro, Macropus robustus isabellinus. Gen Comp Endocrinol 167:60–67

    Article  PubMed  CAS  Google Scholar 

  • Kitaysky AS, Kitaiskaia EV, Piatt JF, Wingfield JC (2006) A mechanistic link between chick diet and decline in seabirds? Proc Royal Soc B Biol Sci 273:445

    Article  CAS  Google Scholar 

  • Knight EH, Fox BJ (2000) Does habitat structure mediate the effects of forest fragmentation and human-induced disturbance on the abundance of Antechinus stuartii? Aust J Zool 48:577–595

    Article  Google Scholar 

  • Lazenby-Cohen KA, Cockburn A (1991) Social and foraging components of the home range in Antechinus stuartii (Dasyuridae: Marsupialia). Aust J Ecol 16:301–307

    Article  Google Scholar 

  • Le Maho Y, Karmann H, Briot D, Handrich Y, Robin JP, Mioskowski E, Cherel Y, Farni J (1992) Stress in birds due to routine handling and a technique to avoid it. Am J Physiol Regul Intergrative Comp Physiol (Am J Physiol Regul Integr Comp Physiol) 263:775–781

    Google Scholar 

  • Lessells CM, Boag PT (1987) Unrepeatable repeatabilities: a common mistake. Auk 104:116–121

    Google Scholar 

  • Lewis SM, Bain BJ, Bates I, Dacie JV (2006) Dacie and Lewis practical haematology. Churchill Livingstone, London

    Google Scholar 

  • Liu J, Mori A (1999) Stress, aging, and brain oxidative damage. Neurochem Res 24:1479–1497

    Article  PubMed  CAS  Google Scholar 

  • Lucas JR, Freeberg TM, Egbert J, Schwabl H (2006) Fecal corticosterone, body mass, and caching rates of Carolina chickadees (Poecile carolinensis) from disturbed and undisturbed sites. Horm Behav 49:634–643

    Article  PubMed  CAS  Google Scholar 

  • Lynn SE, Porter AJ (2008) Trapping initiates stress response in breeding and non-breeding house sparrows Passer domesticus: implications for using unmonitored traps in field studies. J Avian Biol 39:87–94

    Article  Google Scholar 

  • Mac Nally R, Bennett AF (1997) Species-specific predictions of the impact of habitat fragmentation: local extinction of birds in the box-ironbark forests of central Victoria, Australia. Biol Conserv 82:147–155

    Article  Google Scholar 

  • Mac Nally R, Horrocks G (2002) Habitat change and restoration: responses of a forest-floor mammal species to manipulations of fallen timber in floodplain forests. Animal Biodivers Conserv 25:41–52

    Google Scholar 

  • Mac Nally R, Bennett AF, Horrocks G (2000) Forecasting the impacts of habitat fragmentation. Evaluation of species-specific predictions of the impact of habitat fragmentation on birds in the box–ironbark forests of central Victoria, Australia. Biol Conserv 95:7–29

    Article  Google Scholar 

  • Martin RW, Handasyde KA, Skerratt LF (1998) Current distribution of sarcoptic mange in wombats. Aust Vet J 76:411–414

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Mota R, Valdespino C, Sánchez-Ramos MA, Serio-Silva JC (2007) Effects of forest fragmentation on the physiological stress response of black howler monkeys. Anim Conserv 10:374–379

    Article  Google Scholar 

  • Masello JF, Choconi RG, Helmer M, Kremberg T, Lubjuhn T, Quillfeldt P (2009) Do leucocytes reflect condition in nestling burrowing parrots Cyanoliseus patagonus in the wild? Comp Biochem Physiol Part A 152:176–181

    Article  Google Scholar 

  • May SA, Norton TW (1996) Influence of fragmentation and disturbance on the potential impact of feral predators on native fauna in Australian forest ecosystems. Wildl Res (Wildl Res) 23:387–400

    Google Scholar 

  • Mazerolle DF, Hobson KA (2002) Physiological ramifications of habitat selection in territorial male ovenbirds: consequences of landscape fragmentation. Oecologia 130:356–363

    Article  Google Scholar 

  • McEwen BS, Sapolsky RM (1995) Stress and cognitive function. Curr Opin Neurobiol 5:205–216

    Article  PubMed  CAS  Google Scholar 

  • Menkhorst P, Knight F (2004) A field guide to the mammals of Australia. Oxford University Press, Melbourne

    Google Scholar 

  • Möstl E, Palme R (2002) Hormones as indicators of stress. Domest Anim Endocrinol 23:67–74

    Article  PubMed  Google Scholar 

  • Nadolski J, Skwarska J, Kaliński A, Bańbura M, Śniegula R, Bańbura J (2006) Blood parameters as consistent predictors of nestling performance in great tits (Parus major) in the wild. Comp Biochem Physiol Part A 143:50–54

    Article  CAS  Google Scholar 

  • Naylor R, Richardson SJ, McAllan BM (2008) Boom and bust: a review of the physiology of the marsupial genus Antechinus. J Comp Physiol (B) 178:545–562

    CAS  Google Scholar 

  • Neiger R, Hadley J, Pfeiffer DU (2002) Differentiation of dogs with regenerative and non-regenerative anaemia on the basis of their red cell distribution width and mean corpuscular volume. Vet Rec 150:431

    Article  PubMed  CAS  Google Scholar 

  • Noyce KV, Garshelis DL (1994) Body size and blood characteristics as indicators of condition and reproductive performance in black bears. Bears Biol Manag 9:481–496

    Article  Google Scholar 

  • O’Brien EL, Morrison BL, Johnson LS (2001) Assessing the effects of haematophagous ectoparasites on the health of nestling birds: haematocrit vs haemoglobin levels in House Wrens parasitized by blow fly larvae. J Avian Biol 32:73–76

    Article  Google Scholar 

  • Oishi Y, Sodeyama S, Kondo K (1999) Oxidative stress and haematological changes in immobilized rats. Acta Physiol Scand 165:65–69

    Article  PubMed  CAS  Google Scholar 

  • Romero LM, Romero RC (2002) Corticosterone responses in wild birds: the importance of rapid initial sampling. Condor 104:129–135

    Article  Google Scholar 

  • Rothenberg ME (1998) Eosinophilia. N Engl J Med 338:1592–1600

    Article  PubMed  CAS  Google Scholar 

  • Salvante KG (2006) Techniques for studying integrated immune function in birds. Auk 123:575–586

    Article  Google Scholar 

  • Santos J, Benjamin M, Yang PC, Prior T, Perdue MH (2000) Chronic stress impairs rat growth and jejunal epithelial barrier function: role of mast cells. Am J Physiol Gastrointest Liver Physiol 278:847–854

    Google Scholar 

  • Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21:55–89

    Article  PubMed  CAS  Google Scholar 

  • Schulte-Hostedde AI, Zinner B, Millar JS, Hickling GJ (2005) Restitution of mass–size residuals: validating body condition indices. Ecology 86:155–163

    Article  Google Scholar 

  • Siegel HS (1980) Physiological stress in birds. Bioscience 30:529–534

    Article  CAS  Google Scholar 

  • Stevenson RD, Woods WA Jr (2006) Condition indices for conservation: new uses for evolving tools. Integr Comp Biol 46:1169

    Article  PubMed  CAS  Google Scholar 

  • Stirrat SC (2003) Body condition and blood chemistry of agile wallabies (Macropus agilis) in the wet–dry tropics. Wildl Res 30:59–67

    Article  CAS  Google Scholar 

  • Stokes VL, Pech RP, Banks PB, Arthur AD (2004) Foraging behaviour and habitat use by Antechinus flavipes and Sminthopsis murina (Marsupialia: Dasyuridae) in response to predation risk in eucalypt woodland. Biol Conserv 117:331–342

    Article  Google Scholar 

  • Sumner J, Dickman CR (1998) Distribution and identity of species in the Antechinus stuartii––A. flavipes group (Marsupialia : Dasyuridae) in south-eastern Australia. Aust J Zool 46:27–41

    Article  Google Scholar 

  • Suorsa P, Helle H, Koivunen V, Huhta E, Nikula A, Hakkarainen H (2004) Effects of forest patch size on physiological stress and immunocompetence in an area-sensitive passerine, the Eurasian treecreeper (Certhia familiaris): an experiment. Proc Royal Soc Lond Series B Biol Sci (Lond) 271:435–440

    Article  Google Scholar 

  • Teague CR, Dhabhar FS, Barton RH, Beckwith-Hall B, Powell J, Cobain M, Singer B, McEwen BS, Lindon JC, Nicholson JK (2007) Metabonomic studies on the physiological effects of acute and chronic psychological stress in Sprague-Dawley rats. J Proteome Res 6:2080–2093

    Article  PubMed  CAS  Google Scholar 

  • Tsigos C, Chrousos GP (2002) Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res 53:865–871

    Article  PubMed  Google Scholar 

  • Tyler RD, Cowell RL (1996) Classification and diagnosis of anaemia. Comp Haematol Int 6:1–16

    Article  Google Scholar 

  • Wasser SK, Bevis K, King G, Hanson E (1997) Noninvasive physiological measures of disturbance in the northern spotted owl. Conserv Biol 11:1019–1022

    Article  Google Scholar 

  • Wasser SK, Hunt KE, Brown JL, Cooper K, Crockett CM, Bechert U, Millspaugh JJ, Larson S, Monfort SL (2000) A generalized fecal glucocorticoid assay for use in a diverse array of nondomestic mammalian and avian species. Gen Comp Endocrinol 120:260–275

    Article  PubMed  CAS  Google Scholar 

  • Weber D, Millar J, Neff B (2007) Male reproductive success and female preference in bushy-tailed woodrats (Neotoma cinerea): do females prefer males in good physical condition? Can J Zool 85:169–176

    Article  Google Scholar 

  • Wikel SK (1996) Host immunity to ticks. Annu Rev Entomol 41:1–22

    Article  PubMed  CAS  Google Scholar 

  • Wingfield JC, Sapolsky RM (2003) Reproduction and resistance to stress: when and how. J Neuroendocrinol 15:711–724

    Article  PubMed  CAS  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer Science + Business Media, New York

    Book  Google Scholar 

Download references

Acknowledgments

Trapping and sampling were conducted under Monash University Biological Sciences Animal Ethics Committee approvals BSCI/2008/03 and BSCI/2006/05 and Department of Sustainability and Environment permit 10003798. This research was supported by the Holsworth Wildlife Fund and access to study sites was kindly granted by private landowners throughout the South Gippsland region. Field accommodation was provided by Parks Victoria, J. & S. Bell, G. & J. Wallis, D. & M. Hook and D. Farrar. We also thank C. Rankin for access to South Gippsland Shire council reserves. The support, co-operation and enthusiasm of many individuals and groups helped to facilitate this project, notably the South Gippsland Conservation Society, Venus Bay Landcare and Anders Inlet Landcare. The following are a small fraction of the many people who deserve special thanks and recognition: Eric Cumming, John and Sue Bell, Rick and Marion Bowron (and Johnny), Mary Ellis, David Farrar, Ian Gunn, Daryl and Margaret Hook, Geoff Hutchinson, David Kelly, Martin Newman and Alex and Herb Wilde. We also thank the anonymous reviewers who have provided helpful and insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher P. Johnstone.

Additional information

Communicated by I.D. Hume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnstone, C.P., Lill, A. & Reina, R.D. Does habitat fragmentation cause stress in the agile antechinus? A haematological approach. J Comp Physiol B 182, 139–155 (2012). https://doi.org/10.1007/s00360-011-0598-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-011-0598-7

Keywords

Navigation