Skip to main content
Log in

Skin ice nucleators and glycerol in the freezing-tolerant frog Litoria ewingii

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The brown tree frog (Litoria ewingii) is the only known Southern Hemisphere vertebrate that can survive full-body freezing. Freezing challenges living organisms in many ways, with ice formation in the body producing a suite of physical and metabolic stresses which can damage cells and tissues. The present study looked at two mechanisms that address some of these stresses: cryoprotectants and ice nucleating agents (INAs). Skin secretions from L. ewingii were sampled along with microhabitat substrate and tested for the presence of INAs, which help control ice formation in the body. L. ewingii plasma was tested for seasonal and freezing-induced changes in both glucose and glycerol, which may have a cryoprotective role in freezing-tolerant frogs. Glycerol levels increased on freezing and decreased on thawing, while glucose levels did not change on freezing but increased on thawing. This suggests that glycerol may be acting as a cryoprotectant, although levels are low compared to other frogs. A clear seasonal change was seen in INA activity, with greater activity in winter than in summer. While potent INAs came from the microhabitat substrate, this work has shown for the first time that skin secretions also contain active INAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

INA:

Ice nucleating agent

k.c.p.:

Keyhole cardiac puncture

SVL:

Snout-vent length

T b :

Body temperature

T c :

Crystallization temperature

T circ :

Circulator temperature

References

  • Bazin Y (2006) The overwintering strategy of a southern hemisphere frog the brown tree frog (Litoria ewingii). MSc Thesis, University of Otago

  • Bazin Y, Wharton DA, Bishop PJ (2007) Cold tolerance and overwintering of an introduced New Zealand frog, the brown tree frog (Litoria ewingii). Cryoletters 28:347–358

    PubMed  CAS  Google Scholar 

  • Boobis LH, Maughan RJ (1983) A simple one-step enzymatic fluorometric method for the determination of glycerol in 20 μl of plasma. Clin Chim Acta 132:173–179

    Article  PubMed  CAS  Google Scholar 

  • Chen T, Farragher S, Bjourson AJ, Orr DF, Rao P, Shaw C (2003) Granular gland transcriptomes in stimulated amphibian skin secretions. Biochem J 371:125–130

    Article  PubMed  CAS  Google Scholar 

  • Chown SL, Sinclair BJ, Leinaas HP, Gaston KJ (2004) Hemispheric asymmetries in biodiversity—a serious matter for ecology. PLoS Biol 2:e406

    Article  PubMed  Google Scholar 

  • Clarke BT (1997) The natural history of amphibian skin secretions, their normal functioning and potential medical applications. Biol Rev 72:365–379

    Article  PubMed  CAS  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioural sciences. Lawrence Erlbaum Associates, Hillsdale

    Google Scholar 

  • Costanzo JP, Lee RE (1991) Freeze-thaw injury in erythrocytes of the freeze-tolerant wood frog, Rana sylvatica. Am J Physiol 261:R1346–R1350

    PubMed  CAS  Google Scholar 

  • Costanzo JP, Lee RE (1996) Ice nucleation in freeze-tolerant vertebrates. Cryoletters 17:111–118

    Google Scholar 

  • Costanzo JP, Lee RE (2005) Cryoprotection by urea in a terrestrially hibernating frog. J Exp Biol 208:4079–4089

    Article  PubMed  Google Scholar 

  • Costanzo JP, Lee RE, Wright MF (1992a) Cooling rate influences cryoprotectant distribution and organ dehydration in freezing wood frogs. J Exp Zool 261:373–378

    Article  PubMed  CAS  Google Scholar 

  • Costanzo JP, Wright MF, Lee RE (1992b) Freeze tolerance as an overwintering adaptation in Cope’s gray treefrog (Hyla chrysoscelis). Copeia 2:565–569

    Article  Google Scholar 

  • Costanzo JP, Grenot C, Lee RE (1995) Supercooling, ice inoculation and freeze tolerance in the European common lizard, Lacerta vivipara. J Comp Physiol B 165:238–244

    Article  PubMed  CAS  Google Scholar 

  • Costanzo JP, Callahan PA, Lee RE, Wright MF (1997a) Frogs reabsorb glucose from urinary bladder. Nature 389:343–344

    Article  PubMed  CAS  Google Scholar 

  • Costanzo JP, Irwin JT, Lee RE (1997b) Freezing impairment of male reproductive behaviours of the freeze-tolerant wood frog Rana sylvatica. Physiol Zool 70:158–166

    PubMed  CAS  Google Scholar 

  • Costanzo JP, Bayuk JM, Lee RE (1999) Inoculative freezing by environmental ice nuclei in the freeze-tolerant wood frog, Rana sylvatica. J Exp Zool 284:7–14

    Article  PubMed  CAS  Google Scholar 

  • Costanzo JP, Litzgus JD, Iverson JB, Lee RE (2000) Ice nuclei in soil compromise cold hardiness of hatchling painted turtles (Chrysemys picta). Ecology 81:346–360

    Google Scholar 

  • Costanzo JP, Baker PJ, Dinkelacker SA, Lee RE (2003) Endogenous and exogenous ice-nucleating agents constrain supercooling in the hatchling painted turtle. J Exp Biol 206:477–485

    Article  PubMed  Google Scholar 

  • Costanzo JP, Dinkelacker SA, Iverson JB, Lee RE (2004) Physiological ecology of overwintering in the hatchling painted turtle: multiple-scale variation in response to environmental stress. Physiol Biochem Zool 77:74–99

    Article  PubMed  Google Scholar 

  • Costanzo JP, Baker PJ, Lee RE (2006) Physiological responses to freezing in hatchlings of freeze-tolerant and -intolerant turtles. J Comp Physiol B 176:697–707

    Article  PubMed  CAS  Google Scholar 

  • Croes SA, Thomas RE (2000) Freeze tolerance and cryoprotectant synthesis of the Pacific tree frog Hyla regilla. Copeia 3:863–868

    Article  Google Scholar 

  • Daló NL, Bracho GA, Piña-Crespo JC (2007) Motor impairment and neuronal damage following hypothermia in tropical amphibians. Int J Exp Path 88:1–7

    Article  Google Scholar 

  • Denlinger DL, Lee RE (2010) Low temperature biology of insects. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gill BJ (1973) Distribution and habits of the brown tree frog Litoria ewingii Dumeril and Bibron in the Manawatu-Rangitikei region. Proc NZ Ecol Soc 20:31–34

    Google Scholar 

  • Gurian-Sherman D, Lindow SE (1995) Differential effects of growth temperature on ice nuclei active at different temperatures that are produced by cells of Pseudomonas syringae. Cryobiology 32:129–138

    Article  PubMed  CAS  Google Scholar 

  • Harri MNE, Lindgren E (1972) Adrenergic control of carbohydrate metabolism in the frog, Rana temporaria. Comp Gen Pharmac 3:226–234

    Article  CAS  Google Scholar 

  • Irwin JT, Lee RE (2003) Geographic variation in energy storage and physiological responses to freezing in the gray treefrogs Hyla versicolor and H. chrysoscelis. J Exp Biol 206:2859–2867

    Article  PubMed  Google Scholar 

  • Irwin JT, Costanzo JP, Lee RE (1999) Terrestrial hibernation in the northern cricket frog, Acris crepitans. Can J Zool 77:1240–1246

    Google Scholar 

  • Kling KB, Costanzo JP, Lee RE (1994) Post-freeze recovery of peripheral nerve function in the freeze-tolerant wood frog, Rana sylvatica. J Comp Physiol B 164:316–320

    Article  PubMed  CAS  Google Scholar 

  • Layne JR (1991) External ice triggers freezing in freeze-tolerant frogs at temperatures above their supercooling point. J Herpetol 25:129–130

    Article  Google Scholar 

  • Layne JR (1992) Postfreeze survival and muscle function in the leopard frog (Rana pipiens) and the wood frog (Rana sylvatica). J Therm Biol 17:121–124

    Article  Google Scholar 

  • Layne JR (1995) Crystallization temperatures of frogs and their individual organs. J Herpetol 29:296–298

    Article  Google Scholar 

  • Layne JR, Jones AL (2001) Freeze tolerance in the gray treefrog: cryoprotectant mobilization and organ dehydration. J Exp Zool 290:1–5

    Article  PubMed  Google Scholar 

  • Layne JR, Lee RE (1995) Adaptations of frogs to survive freezing. Clim Res 5:53–59

    Article  Google Scholar 

  • Layne JR, Stapleton MG (2009) Annual variation in glycerol mobilisation and effect of freeze rigor on post-thaw locomotion in the freeze-tolerant frog Hyla versicolor. J Comp Physiol B 179:215–221

    Article  PubMed  CAS  Google Scholar 

  • Layne JR, Lee RE, Heil TL (1989) Freezing-induced changes in the heart rate of wood frogs (Rana sylvatica). Am J Physiol Regul Integr Comp Physiol 257:1046–1049

    Google Scholar 

  • Layne JR, Lee RE, Huang JL (1990) Inoculation triggers freezing at high subzero temperatures in a freeze-tolerant frog (Rana sylvatica) and insect (Eurosta solidaginis). Can J Zool 68:506–510

    Article  Google Scholar 

  • Layne JR, Lee RE, Cutwa MM (1996) Post-hibernation excretion of glucose in urine of the freeze tolerant frog Rana sylvatica. J Herpetol 30:85–87

    Article  Google Scholar 

  • Lee RE, Costanzo JP (1998) Biological ice nucleation and ice distribution in cold-hardy ectothermic animals. Ann Rev Physiol 60:55–72

    Article  CAS  Google Scholar 

  • Lee MR, Lee RE, Strong-Gunderson JM, Minges SR (1995) Isolation of ice-nucleating active bacteria from the freeze-tolerant frog, Rana sylvatica. Cryobiology 32:358–365

    Article  PubMed  CAS  Google Scholar 

  • Loomis SH, Zinser M (2001) Isolation and identification of an ice-nucleating bacterium from the gills of the intertidal bivalve mollusc Geukensia demissa. J Exp Mar Biol Ecol 261:225–235

    Article  PubMed  Google Scholar 

  • Lundberg JM, Hökfelt T, Ånggard A, Terenius L, Elde R, Markey K, Kimmel J (1982) Organizational principles in the peripheral sympathetic nervous system: subdivision by coexisting peptides (somatostatin-, avian pancreatic polypeptide-, and vasoactive intestinal polypeptide-like immunoreactive materials). Proc Nat Acad Sci USA 79:1303–1307

    Article  PubMed  CAS  Google Scholar 

  • Lundheim R (2002) Physiological and ecological significance of biological ice nucleators. Phil Trans R Soc Lond B 357:937–943

    Article  CAS  Google Scholar 

  • Margesin R, Neuner G, Storey KB (2007) Cold-loving microbes, plants, and animals—fundamental and applied aspects. Naturwissenschaften 94:77–99

    Article  PubMed  CAS  Google Scholar 

  • Matutte B, Storey KB, Knoop FC, Conlon JM (2000) Induction of synthesis of an antimicrobial peptide in the skin of the freeze-tolerant frog, Rana sylvatica, in response to environmental stimuli. Febs Lett 483:135–138

    Article  PubMed  CAS  Google Scholar 

  • Moalem S, Storey KB, Percy ME, Peros MC, Perl DP (2005) The sweet thing about type 1 diabetes: a cryoprotective evolutionary adaptation. Med Hypothesis 65:8–16

    Article  CAS  Google Scholar 

  • Packard GC, Packard MJ (2006) The relationship between gut contents and supercooling capacity in hatchling painted turtles (Chrysemys picta). Comp Biochem Physiol A 144:98–104

    Article  Google Scholar 

  • Pallant JF (2005) SPSS survival manual. Allen & Unwin, Sydney

    Google Scholar 

  • Rexer-Huber KMJ (2009) Freezing frogs: the ecophysiology of winter survival in the brown tree frog, Litoria ewingii. MSc Thesis, University of Otago

  • Schmid W (1982) Survival of frogs in low temperatures. Science 215:697–698

    Article  PubMed  CAS  Google Scholar 

  • Sinclair BJ, Worland MR, Wharton DA (1999) Ice nucleation and freezing tolerance in New Zealand alpine and lowland weta, Hemideina spp. (Orthoptera; Stenopelmatidae). Physiol Entomol 24:56–63

    Article  Google Scholar 

  • Sinclair BJ, Addo-Bediako A, Chown SL (2003) Climatic variability and the evolution of insect freeze tolerance. Biol Rev 78:181–195

    Article  PubMed  Google Scholar 

  • Steinborner ST, Waugh RJ, Bowie JH, Wallace JC, Tyler MJ, Ramsay SL (1997) New caerin antibacterial peptides from the skin glands of the Australian tree frog Litoria xanthomera. J Pept Sci 3:181–185

    Article  PubMed  CAS  Google Scholar 

  • Storey KB (1997) Organic solutes in freezing tolerance. Comp Biochem Physiol A 117:319–326

    Article  CAS  Google Scholar 

  • Storey KB (2004a) Functional metabolism: regulation and adaptation. Wiley-Liss, Hoboken

    Book  Google Scholar 

  • Storey KB (2004b) Strategies for exploration of freeze responsive gene expression: advances in vertebrate freeze tolerance. Cryobiology 48:134–145

    Article  PubMed  CAS  Google Scholar 

  • Storey KB, Storey JM (1984) Biochemical adaptation for freezing tolerance in the wood frog, Rana sylvatica. J Comp Physiol B 155:29–36

    Article  CAS  Google Scholar 

  • Storey JM, Storey KB (1985a) Adaptations of metabolism for freeze tolerance in the gray tree frog, Hyla versicolor. Can J Zool 63:49–54

    Article  CAS  Google Scholar 

  • Storey JM, Storey KB (1985b) Triggering of cryoprotectant synthesis by the initiation of ice nucleation in the freeze tolerant frog, Rana sylvatica. J Comp Physiol B 156:191–195

    Article  CAS  Google Scholar 

  • Storey KB, Storey JM (1986) Freeze tolerance and intolerance as strategies of winter survival in terrestrially hibernating amphibians. Comp Biochem Physiol A 83:613–617

    Article  PubMed  CAS  Google Scholar 

  • Storey KB, Storey JM (1988) Freeze tolerance in animals. Physiol Rev 68:27–84

    PubMed  CAS  Google Scholar 

  • Storey KB, Storey JM (1996) Natural freezing survival in animals. Ann Rev Ecol Syst 27:365–386

    Article  Google Scholar 

  • Storey KB, Baust JG, Wolanczyk JP (1992) Biochemical modification of plasma ice nucleating activity in a freeze-tolerant frog. Cryobiology 29:374–384

    Article  PubMed  CAS  Google Scholar 

  • Tyler MJ, Stone DJM, Bowie JH (1992) A novel method for the release and collection of dermal glandular secretion from the skin of frogs. J Pharmacol Toxicol Methods 28:199–200

    Article  PubMed  CAS  Google Scholar 

  • Voituron Y, Eugene M, Barré H (2003) Survival and metabolic responses to freezing by the water frog (Rana ridibunda). J Exp Zool 299:118–126

    Article  Google Scholar 

  • Voituron Y, Joly P, Eugene M, Barré H (2005) Freezing tolerance of the European water frogs: the good, the bad, and the ugly. Am J Physiol 288:R1563–R1570

    CAS  Google Scholar 

  • Wharton DA, Mutch JS, Wilson PW, Marshall CJ, Lim M (2004) A simple ice nucleation spectrometer. Cryoletters 25:335–340

    PubMed  Google Scholar 

  • Wilson PW, Heneghan AF, Haymet ADJ (2003) Ice nucleation in nature: supercooling point (SCP) measurements and the role of heterogeneous nucleation. Cryobiology 46:88–98

    Article  PubMed  CAS  Google Scholar 

  • Wilson SL, Kelley DL, Walker VK (2006) IN-active bacteria in temperate-zone soil. Environ Microbiol 8:1816–1824

    Article  PubMed  CAS  Google Scholar 

  • Winkler B, Rathgeb I, Steele R, Altszuler N (1970) Conversion of glycerol to glucose in the normal dog. Am J Physiol 2:497–502

    Google Scholar 

  • Wolanczyk JP, Storey KB, Baust JG (1990) Ice nucleating activity in the blood of the freeze-tolerant frog, Rana sylvatica. Cryobiology 27:328–335

    Article  PubMed  CAS  Google Scholar 

  • Worland MR, Lukešová A (2000) The effect of feeding on specific soil algae on the cold-hardiness of two Antarctic micro-arthropods (Alaskozetes antarcticus and Cryptopygus antarcticus). Polar Biol 23:766–774

    Article  Google Scholar 

  • Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830

    Article  PubMed  CAS  Google Scholar 

  • Yoder JA, Benoit JB, Denlinger DL, Rivers DB (2006) Stress-induced accumulation of glycerol in the flesh fly, Sarcophaga bullata: evidence indicating anti-desiccant and cryoprotectant functions of this polyol and a role for the brain in coordinating the response. J Insect Physiol 52:202–214

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman SL, Frisbie J, Goldstein DL, West J, Rivera K, Krane CM (2007) Excretion and conservation of glycerol, and expression of aquaporins and glyceroporins, during cold acclimation in Cope’s gray tree frog Hyla chrysoscelis. Am J Physiol 292:R544–R555

    CAS  Google Scholar 

Download references

Acknowledgments

Our thanks to Ken Miller for help with image preparation and to the Phillips family for access to their land. This work was supported by a University of Otago Research Grant to D.A.W. and a departmental grant to K.R.H. We are also grateful to the two anonymous reviewers whose comments were of great help in improving this manuscript.

Ethical standards

Housing and experimental protocols and procedures for the care and use of Litoria ewingii complied with the guidelines of the Animal Welfare Act 1999, the National Animal Ethics Advisory Committee Good Practice Guide and the University of Otago Code of Ethical Conduct. All procedures were approved by the University of Otago Animal Ethics Committee.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Wharton.

Additional information

Communicated by I.D. Hume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rexer-Huber, K.M.J., Bishop, P.J. & Wharton, D.A. Skin ice nucleators and glycerol in the freezing-tolerant frog Litoria ewingii . J Comp Physiol B 181, 781–792 (2011). https://doi.org/10.1007/s00360-011-0561-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-011-0561-7

Keywords

Navigation