Skip to main content
Log in

Enzymatic digestion in stomachless fishes: how a simple gut accommodates both herbivory and carnivory

Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The lack of a stomach is not uncommon amongst teleost fishes, yet our understanding of this reductive specialisation is lacking. The absence of a stomach does not restrict trophic preference, resulting in fishes with very similar alimentary morphology capable of digesting differing diets. We examined the digestive biochemistry of four beloniform fishes: two herbivorous halfbeaks (Hemiramphidae) and two carnivorous needlefish (Belonidae) to determine how these fishes digest their respective diets with their simple, short gut. We found that although the halfbeaks showed significantly greater α-amylase activity than that of the needlefish (P < 0.01), trypsin, lipase, aminopeptidase and maltase activity were not substantially different between the two families. We also found that habitat (freshwater vs. marine) appears to play a significant role in digestive capability, as the two freshwater taxa and the two marine taxa were significantly different (ANOSIM; dietary Gobal R = 0.544, P = 0.001, habitat Global R = 0.437, P = 0.001), despite their phyletic and dietary similarities. Our findings offer partial support for the adaptive modulation hypothesis, support the Plug-Flow Reactor model of digestion in herbivorous halfbeaks and also support the compartmental model of digestion but suggest that another model is required to describe stomachless carnivorous needlefish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Barton M (2007) Bond’s biology of fishes, 3rd edn. Thomson, Belmont, CA

    Google Scholar 

  • Bjorndal KA (1980) Nutrition and grazing behavior of the green turtle Chelonia mydas. Mar Biol 56:147–154. doi:10.1007/BF00397131

    Article  CAS  Google Scholar 

  • Buddington RK, Chen JW, Diamond J (1987) Genetic and phenotypic adaptation of intestinal nutrient transport to diet in fish. J Physiol 393:261–281

    PubMed  CAS  Google Scholar 

  • Carbone C, Teacher A, Rowcliffe JM (2007) The costs of carnivory. PloS Biol 5:e22. doi:10.1371/journal.pbio.0050022

  • Carseldine L, Tibbetts IR (2005) Dietary analysis of the herbivorous hemiramphid Hyporhamphus regularis ardelio: an isotopic approach. J Fish Biol 66:1589–1600. doi:10.1111/j.1095-8649.2005.00701.x

    Article  Google Scholar 

  • Chakrabarti I, Gani MA, Chaki KK, Sur R, Misra KK (1995) Digestive enzymes in 11 freshwater teleost species in relation to food habit and niche segregation. Comp Biochem Physiol 112:167–177. doi:10.1016/0300-9629(95)00072-F

    Article  Google Scholar 

  • Choat JH, Clements KD (1998) Vertebrate herbivores in marine and terrestrial environments: a nutritional ecology perspective. Annu Rev Ecol Syst 29:375–403. doi:10.1146/annurev.ecolsys.29.1.375

    Article  Google Scholar 

  • Clements KD (1991) Endosymbiotic communities of two herbivorous labroid fishes, Odax cyanomelas and O. pullus. Mar Biol 109:223–229. doi:10.1007/BF01319390

    Article  Google Scholar 

  • Clements KD, Bellwood DR (1988) A comparison of the feeding mechanisms of two herbivorous labroid fishes, the temperate Odax pullus and the tropical Scarus rubroviolaceus. Mar Freshw Res 39:87–107. doi:10.1071/MF9880087

    Article  CAS  Google Scholar 

  • Clements KD, Raubenheimer D (2006) Feeding and nutrition. In: Evans DH (ed) The physiology of fishes. CRC, Boca Raton, pp 47–82

    Google Scholar 

  • Clements KD, Rees D (1998) Preservation of ingerent contractility in isolated gut segments from herbivorous and carnivorous marine fish. J Comp Physiol B 168:61–72. doi:10.1016/j.cbpc.2004.10.008

    Article  Google Scholar 

  • Clements KD, Raubenheimer D, Choat JH (2009) Nutritional ecology of marine herbivorous fishes: ten years on. Funct Ecol 23:79–92. doi:10.1111/j.1365-2435.2008.01524.x

    Article  Google Scholar 

  • Crossman DJ, Choat JH, Clements KD (2005) Nutritional ecology of nominally herbivorous fishes on coral reefs. Mar Ecol Prog Ser 296:129–142. doi:10.3354/meps296129

    Article  CAS  Google Scholar 

  • Day RD, German DP, Tibbetts IR (2010) Why can’t young fish eat plants? Neither digestive enzymes nor gut development preclude herbivory in the young of a stomachless marine herbivorous fish. Comp Biochem Physiol B. doi:10.1016/j.cbpb.2010.09.010

  • German DP (2009) Do herbivorous minnows have “plug-flow reactor” guts? Evidence from digestive enzyme activities, gastrointestinal fermentation, and luminal nutrient concentrations. J Comp Physiol B 179:759–771. doi:10.1007/s00360-009-0359-z

    Article  PubMed  Google Scholar 

  • German DP, Bittong RA (2009) Digestive enzyme activities and gastrointestinal fermentation in wood-eating catfishes. J Comp Physiol B 179:1025–1042. doi:10.1007/s00360-009-0383-z

    Article  PubMed  CAS  Google Scholar 

  • German DP, Horn MH, Gawlicka A (2004) Digestive enzyme activities in herbivorous and carnivorous prickleback fishes (Teleostei: Stichaeidae): ontogenetic, dietary, and phylogenetic effects. Physiol Biochem Zool 77:789–804. doi:10.1086/422228

    Article  PubMed  CAS  Google Scholar 

  • German DP, Nagle BC, Villeda JM, Ruiz AM, Thompson AW, Bald SC, Evans DH (2010) Evolution of herbivory in a carnivorous clade of minnows (Teleostei: Cyprinidae): effects on gut size and digestive physiology. Physiol Biochem Zool 83:1–18. doi:10.1086/648510

    Article  PubMed  Google Scholar 

  • Harpaz S, Hakim Y, Slosman T, Eroldogan OT (2005) Effects of adding salt to the diet of Asian sea bass Lates calcarifer reared in fresh or salt water recirculating tanks, on growth and brush border enzyme activity. Aquaculture 248:315–324. doi:10.1016/j.aquaculture.2005.03.007

    Article  CAS  Google Scholar 

  • Hidalgo MC, Urea E, Sanz A (1999) Comparative syudy of digestive enzymes in fish with different nutritional habits. Proteolytic and amylase activities. Aquaculture 170:267–283. doi:10.1016/S0044-8486(98)00413-X

    Article  CAS  Google Scholar 

  • Hofer R, Schiemer F (1981) Proteolytic activity in the digestive tract of several species of fish with different feeding habits. Oecologia 48:342–345. doi:10.1007/BF00346492

    Article  Google Scholar 

  • Horn MH, Messer KS (1992) Fish guts as chemical reactors—a model of the alimentary canals of marine herbivorous fishes. Mar Biol 113:527–535. doi:10.1007/BF00349695

    Article  Google Scholar 

  • Horn MH, Gawlicka AK, German DP, Logothetis EA, Cavanagh JW, Boyle KS (2006) Structure and function of the stomachless digestive system in three related species of New World silverside fishes (Atherinopsidae) representing herbivory, omnivory, and carnivory. Mar Biol 149:1237–1245. doi:10.1007/s00227-006-0281-9

    Article  Google Scholar 

  • Karasov WH, Hume ID (1997) Vertebrate gastrointestinal system. In: Danzler W (ed) Handbook of comparative physiology. American Physiological Society, Bethesda, pp 409–480

    Google Scholar 

  • Karasov WH, Martinez del Rio C (2007) Physiological ecology: how animals process energy, nutrients, and toxins. Princeton University Press, Princeton

    Google Scholar 

  • Klumpp DW, Nichols PD (1983) Nutrition of the southern sea garfish Hyporhamphus melanochir: gut passage rate and daily consumption of two food types and assimilation of seagrass components. Mar Ecol Prog Ser 12:207–216. doi:10.3354/meps012207

    Article  Google Scholar 

  • Kuiper-Linley M, Johnson CR, Lanyon JM (2007) Effects of simulated green turtle regrazing on seagrass abundance, growth and nutritional status in Moreton Bay, south-east Queensland, Australia. Mar Freshw Res 58:492–503. doi:10.1071/MF06241

    Article  CAS  Google Scholar 

  • Logothetis EA, Horn MH, Dickson KA (2001) Gut morphology and function in Atherinops affinis (Teleostei: Atherinopsidae), a stomachless omnivore feeding on macroalgae. J Fish Biol 59:1298–1312. doi:10.1111/j.1095-8649.2001.tb00193.x

    Article  Google Scholar 

  • Lovejoy NR, Iranpour M, Collette BB (2004) Phylogeny and jaw ontogeny of beloniform fishes. Integr Comp Biol 44:366–377. doi:10.1093/icb/44.5.366

    Article  CAS  Google Scholar 

  • Manjakasy JM, Day RD, Kemp A, Tibbetts IR (2009) Functional morphology of digestion in the stomachless, piscivorous needlefish Strongylura leiura ferox (Teleostei: Beloniformes). J Morphol 270:1155–1165. doi:10.1002/jmor.10745

    Article  PubMed  Google Scholar 

  • Montfort DO, Campbell J, Clements KD (2002) Hindgut fermentation in three species of marine herbivorous fish. Appl Environ Microbiol 68:1374–1380. doi:10.1128/AEM.68.3.1374-1380.2002

    Article  Google Scholar 

  • Montgomery JLM, Targett TE (1992) The nutritional role of seagrass in the diet of the omnivorous pinfish Lagodon rhomboides (L.). J Exp Mar Biol Ecol 158:37–57. doi:10.1016/0022-0981(92)90307-V

    Article  Google Scholar 

  • Moutou KA, Panagiotaki P, Mamuris Z (2004) Effects of salinity on digestive protease activity in the euryhaline sparid Sparus aurata L.: a preliminary study. Aquac Res 35:912–914. doi:10.1111/j.1365-2109.2004.01068.x

    Article  CAS  Google Scholar 

  • Queensland Environmental Protection Agency Coastal Services Unit (2005) Queensland wave climate summary for season 2003–2004. EPA, Brisbane

    Google Scholar 

  • Raubenheimer D, Simpson S (1998) Nutrient transfer functions: the site of integration between feeding behaviour and nutritional physiology. Chemoecology 8:61–68. doi:10.1007/PL00001805

    Article  Google Scholar 

  • Robertson AI, Klumpp DW (1983) Feeding habits of the southern Australian garfish Hyporhamphus melanochir: a diurnal herbivore and nocturnal carnivore. Mar Ecol Prog Ser 10:197–201. doi:10.3354/meps010197

    Article  Google Scholar 

  • Skea GL, Mountfort DO, Clements KD (2005) Gut carbohydrases from the New Zealand marine herbivorous fishes Kyphosus sydneyanus (Kyphosidae), Aplodactylus arctidens (Aplodactylidae) and Odax pullus (Labridae). Comp Biochem Physiol B 140:259–269. doi:10.1016/j.cbpc.2004.10.008

    Article  PubMed  CAS  Google Scholar 

  • Skea GL, Mountfort DO, Clements KD (2007) Contrasting digestive strategies in four New Zealand herbivorous fishes as reflected by carbohydrase activity profiles. Comp Biochem Physiol A 146:63–70. doi:10.1016/j.cbpa.2006.09.006

    Article  CAS  Google Scholar 

  • Smith DM, Grasty RC, Theodosiou NA, Tabin CJ, Nascone-Yoder NM (2000) Evolutionary relationships between the amphibian, avian and mammalian stomachs. Evol Dev 2:348–359. doi:10.1046/j.1525-142x.2000.00076.x

    Article  PubMed  CAS  Google Scholar 

  • Stevens CE, Hume ID (1995) Comparative physiology of the vertebrate digestive system. Cambridge University Press, Cambridge

    Google Scholar 

  • Tibbetts IR (1991) The trophic ecology, functional morphology and phylogeny of the Hemiramphidae (Beloniformes). PhD thesis, University of Queensland, St. Lucia

  • Tibbetts IR, Carseldine L (2003) Anatomy of a hemiramphid pharyngeal mill with reference to Arrhamphus sclerolepis krefftii (Steindachner) (Teleostei : Hemiramphidae). J Morphol 255:228–243. doi:10.1002/jmor.10057

    Article  PubMed  Google Scholar 

  • Tibbetts IR, Carseldine L (2005) Trophic shifts in three subtropical Australian halfbeaks (Teleostei:Hemiramphidae). Mar Freshw Res 56:925–932. doi:10.1071/MF04305

    Article  Google Scholar 

  • Tsuzuki MY, Sugai JK, Maciel JC, Francisco CJ, Cerqueira VR (2007) Survival, growth and digestive enzyme activity of juveniles of the fat snook (Centropomus parallelus) reared at different salinities. Aquaculture 271:319–325. doi:10.1016/j.aquaculture.2007.05.002

    Article  CAS  Google Scholar 

  • Verigina IA (1991) Basic adaptations of the digestive system in bony fishes as a function of diet. J Ichthyol 31:897–907

    Google Scholar 

  • Zambonino Infante JL, Cahu CL (2001) Ontogeny of the gastrointestinal tract of marine fish larvae. Comp Biochem Physiol C 130:477–487. doi:10.1016/S1532-0456(01)00274-5

    CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the University of Queensland Postgraduate Research Funding scheme. We would like to thank A. Barnes for the use of his spectrophotometer, J. Mitchell for field assistance, S. Lunau from the Gladstone Area Water Board for Lake Awoonga temperature data and K. Clements for comments on the manuscript. Animals used in this study were handled in accordance with The University of Queensland’s Animal Ethics Committee permit CMS/536/08/UQ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan D. Day.

Additional information

Communicated by I.D. Hume.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 50 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Day, R.D., German, D.P., Manjakasy, J.M. et al. Enzymatic digestion in stomachless fishes: how a simple gut accommodates both herbivory and carnivory. J Comp Physiol B 181, 603–613 (2011). https://doi.org/10.1007/s00360-010-0546-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-010-0546-y

Keywords

Navigation