Skip to main content
Log in

Segmental expression of claudin proteins correlates with tight junction barrier properties in rat intestine

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

In tubular epithelia, barrier function varies in a segment-specific way. The aim of this study was to correlate the presence of tight junction proteins and paracellular barrier properties along rat intestine. Tissue segments of duodenum, jejunum, ileum, and colon were stripped of submucosal cell layers and mounted in Ussing chambers for impedance spectroscopy to measure epithelial resistance (R epi). In parallel, expression of tight junction proteins was analysed by Western blots and immune fluorescence confocal microscopy. Colon showed highest R epi, followed by duodenum, jejunum, and ileum. In small intestine, common transepithelial resistance (R trans or TER) overestimated true R epi by ~60%. In colon, strongest expression of “tightening” claudins 1, 3, 4, 5, and 8 was detected. In accordance with R epi the most proximal of the small intestinal segments, duodenum exhibited highest expression of “tightening” claudins and lowest expression of claudins mediating permeability, namely claudin-2, -7, and -12, compared to jejunum and ileum. These results correspond to the specific role of the duodenum as the first segment facing the acidic gastric content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

TER:

Transepithelial Resistance

TJ:

Tight Junction

References

  • Alexandre MD, Lu Q, Chen YH (2005) Overexpression of claudin-7 decreases the paracellular Cl conductance and increases the paracellular Na+ conductance in LLC-PK1 cells. J Cell Sci 118:2683–2693

    Article  CAS  PubMed  Google Scholar 

  • Amasheh S, Meiri N, Gitter AH, Schöneberg T, Mankertz J, Schulzke JD, Fromm M (2002) Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J Cell Sci 115:4969–4976

    Article  CAS  PubMed  Google Scholar 

  • Amasheh S, Schmidt T, Mahn M, Florian P, Mankertz J, Tavalali S, Gitter AH, Schulzke JD, Fromm M (2005) Expression of claudin-5 contributes to barrier properties in tight junctions of epithelial cells. Cell Tiss Res 321:89–96

    Article  CAS  Google Scholar 

  • Amasheh S, Milatz S, Krug SM, Bergs M, Amasheh M, Schulzke JD, Fromm M (2009a) Na+ absorption defends from paracellular back-leakage by claudin-8 upregulation. Biochem Biophys Res Commun 378:45–50

    Article  CAS  PubMed  Google Scholar 

  • Amasheh S, Dullat S, Fromm M, Schulzke JD, Buhr HJ, Kroesen AJ (2009b) Inflamed pouch mucosa possesses altered tight junctions indicating recurrence of inflammatory bowel disease. Int J Colorectal Dis 24:1149–1156

    Article  PubMed  Google Scholar 

  • Angelow S, Kim KJ, Yu AS (2006) Claudin-8 modulates paracellular permeability to acidic and basic ions in MDCK II cells. J Physiol 571:15–26

    Article  CAS  PubMed  Google Scholar 

  • Barmeyer C, Amasheh S, Tavalali S, Mankertz J, Zeitz M, Fromm M, Schulzke JD (2004) IL-1beta and TNFalpha regulate sodium absorption in rat distal colon. Biochem Biophys Res Commun 317:500–507

    Article  CAS  PubMed  Google Scholar 

  • Bürgel N, Bojarski C, Mankertz J, Zeitz M, Fromm M, Schulzke JD (2002) Mechanisms of diarrhea in collagenous colitis. Gastroenterology 123:433–443

    Article  PubMed  Google Scholar 

  • Epple HJ, Amasheh S, Mankertz J, Goltz M, Schulzke JD, Fromm M (2000) Early aldosterone effect in distal colon by transcriptional regulation of ENaC subunits. Am J Physiol Gastrointest Liver Physiol 278:G718–G724

    CAS  PubMed  Google Scholar 

  • Florian P, Amasheh S, Lessidrensky M, Todt I, Bloedow A, Ernst A, Fromm M, Gitter AH (2003) Claudins in the tight junctions of stria vascularis marginal cells. Biochem Biophys Res Commun 304:5–10

    Article  CAS  PubMed  Google Scholar 

  • Fromm M, Schulzke JD, Hegel U (1985) Epithelial and subepithelial contributions to transmural electrical resistance of intact rat jejunum, in vitro. Pflügers Arch 405:400–402

    Article  CAS  PubMed  Google Scholar 

  • Fujita H, Chiba H, Yokozaki H, Sakai N, Sugimoto K, Wada T, Kojima T, Yamashita T, Sawada N (2006) Differential expression and subcellular localization of claudin-7, -8, -12, -13, and -15 along the mouse intestine. J Histochem Cytochem 54:933–944

    Article  CAS  PubMed  Google Scholar 

  • Fujita H, Sugimoto K, Inatomi S, Maeda T, Osanai M, Uchiyama Y, Yamamoto Y, Wada T, Kojima T, Yokozaki H, Yamashita T, Kato S, Sawada N, Chiba H (2008) Tight junction proteins claudin-2 and -12 are critical for vitamin D-dependent Ca2+ absorption between enterocytes. Mol Biol Cell 19:1912–1921

    Article  CAS  PubMed  Google Scholar 

  • Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123:1777–1788

    Article  CAS  PubMed  Google Scholar 

  • Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S (1998) Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol 141:1539–1550

    Article  CAS  PubMed  Google Scholar 

  • Furuse M, Hata M, Furuse K, Yoshida Y, Haratake A, Sugitani Y, Noda T, Kubo A, Tsukita S (2002) Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol 156:1099–1111

    Article  CAS  PubMed  Google Scholar 

  • Gitter AH, Schulzke JD, Sorgenfrei D, Fromm M (1997) Ussing chamber for high-frequency transmural impedance analysis of epithelial tissues. J Biochem Biophys Methods 35:81–88

    Article  CAS  PubMed  Google Scholar 

  • Gitter AH, Schulzke JD, Fromm M (1998) Impedance analysis for determination of epithelial and subepithelial resistance in intestinal tissues. J Biochem Biophys Methods 37:35–46

    Article  CAS  PubMed  Google Scholar 

  • Holmes JL, Van Itallie CM, Rasmussen JE, Anderson JM (2006) Claudin profiling in the mouse during postnatal intestinal development and along the gastrointestinal tract reveals complex expression patterns. Gene Expr Patterns 6:581–588

    Article  CAS  PubMed  Google Scholar 

  • Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S, Tsukita S (2005) Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol 171:939–945

    Article  CAS  PubMed  Google Scholar 

  • Kausalya PJ, Amasheh S, Günzel D, Wurps H, Müller D, Fromm M, Hunziker W (2006) Disease-associated mutations affect intracellular traffic and paracellular Mg2+ transport function of Claudin-16. J Clin Invest 116:878–891

    Article  CAS  PubMed  Google Scholar 

  • Krug SM, Amasheh S, Richter JF, Milatz S, Günzel D, Westphal JK, Huber O, Schulzke JD, Fromm M (2009) Tricellulin forms a barrier to macromolecules in tricellular tight junctions without affecting ion permeability. Mol Biol Cell 20:3713–3724

    Article  CAS  PubMed  Google Scholar 

  • Li WY, Huey CL, Yu AS (2004) Expression of claudin-7 and -8 along the mouse nephron. Am J Physiol Renal Physiol 286:F1063–F1071

    Article  CAS  PubMed  Google Scholar 

  • Morita K, Furuse M, Fujimoto K, Tsukita S (1999) Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc Natl Acad Sci USA 96:511–516

    Article  CAS  PubMed  Google Scholar 

  • Rahner C, Mitic LL, Anderson JM (2001) Heterogeneity in expression and subcellular localization of claudins 2, 3, 4, and 5 in the rat liver, pancreas, and gut. Gastroenterology 120:411–422

    Article  CAS  PubMed  Google Scholar 

  • Reyes JL, Lamas M, Martin D, del Carmen Namorado M, Islas S, Luna J, Tauc M, González-Mariscal L (2002) The renal segmental distribution of claudins changes with development. Kidney Int 62:476–487

    Article  CAS  PubMed  Google Scholar 

  • Van Itallie CM, Rahner C, Anderson JM (2001) Regulated expression of claudin-4 decreases paracellular conductance through a selective decrease in sodium permeability. J Clin Invest 107:1319–1327

    Article  PubMed  Google Scholar 

  • Weng XH, Beyenbach KW, Quaroni A (2005) Cultured monolayers of the dog jejunum with the structural and functional properties resembling the normal epithelium. Am J Physiol Gastrointest Liver Physiol 288:G705–G717

    Article  CAS  PubMed  Google Scholar 

  • Zeissig S, Bürgel N, Günzel D, Richter J, Mankertz J, Wahnschaffe U, Kroesen AJ, Zeitz M, Fromm M, Schulzke JD (2007) Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut 56:61–72

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Anja Fromm, In-Fah Lee, Susanna Schön, and Detlef Sorgenfrei for their excellent technical assistance. This study has been supported by the DFG and the Sonnenfeld-Stiftung Berlin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salah Amasheh.

Additional information

Communicated by G. Heldmaier.

A.G. Markov and A. Veshnyakova contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markov, A.G., Veshnyakova, A., Fromm, M. et al. Segmental expression of claudin proteins correlates with tight junction barrier properties in rat intestine. J Comp Physiol B 180, 591–598 (2010). https://doi.org/10.1007/s00360-009-0440-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-009-0440-7

Keywords

Navigation