Skip to main content
Log in

Differential susceptibility of chick and mouse islets to streptozotocin and its co-relation with islet antioxidant status

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Species differences in susceptibility of islets to STZ in different mammals have been well documented. Likewise, failure of diabetes induction in birds by streptozotocin has been reported. We hypothesized that the susceptibility of islets to STZ treatment may be related to generation of reactive oxygen species (ROS) and their antioxidant defense mechanisms. To test this hypothesis, we measured the total ROS generated and estimated the damage caused to the chick islets due to STZ treatment, in terms of lipid peroxidation, protein carbonyl formation and DNA strand breaks and compared it with that of mouse islets. We also compared the activities of antioxidant enzymes like catalase, superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione reductase (GR) and amount of antioxidant molecules like reduced glutathione (GSH) and uric acid under control and STZ-treated conditions. These studies coupled with viability, functionality and presence of glucose transporter GLUT2 in chick and mouse islets clearly indicated that STZ treatment neither affects viability nor functionality of chick islets whereas those of mouse islets are affected significantly. Here we demonstrate for the first time a correlation between the generation of ROS on STZ treatment and antioxidant status with insensitivity of chick islets to STZ resulting into failure of diabetes induction in chick.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aebi HZ (1983) Catalase. In: Bermeyer HU (eds) Methods of enzymatic analysis, vol. 3. Verlagchemie GmbH, Weinhein, pp 277–282

    Google Scholar 

  • Amicarielli F, Ragnelli AM, Aimola P (1999) Age dependent ultrastructural alterations and biochemical response of skeletal muscles after hypoxic or hyperoxic treatments. Biochim Biophys Acta 1453:105–114

    Google Scholar 

  • Anuradha CD, Kanno S, Hirano S (2001) Oxidative damage to mitochondria is a preliminary step to caspase 3 activation in fluoride induced apoptosis in HL-60 cells. Free Radic Biol Med 31:367–373

    Article  PubMed  CAS  Google Scholar 

  • Avanzo JL, Mendonca CX Jr, Cesar MDC (2002) Role of antioxidant systems in induced nutritional pancreatic atrophy in chick. Comp Biochem Physiol B Biochem Mol Biol 131:815–823

    Article  PubMed  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  PubMed  CAS  Google Scholar 

  • Becker FB (1993) Towards the physiological function of uric acid. Free Radic Boil Med 14:615–631

    Article  CAS  Google Scholar 

  • Bedoya FJ, Solana F, Lucas M (1996) N-monomethyl-arginine and nicotinamide prevent streptozotocin induced double strand DNA break formation in pancreatic rat islets. Experientia 52:344–347

    Article  PubMed  CAS  Google Scholar 

  • Cardinal JW, Margison GP, Mynett KJ, Yates AP, Cameron DP, Elder RH (2001) Increased susceptibility to streptozotocin-induced B cell apoptosis and delayed autoimmune diabetes in alkylpurine-DNA-N-glycosylase-deficient mice. Mol Cell Biol 21:5605–5613

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Edward CC, Pellet L, Moritz JT, Epstein PN (2001) Over expression of metallothionein in pancreatic b cells reduces streptozotocin-induced DNA damage and diabetes. Diabetes 50:2040–2046

    PubMed  CAS  Google Scholar 

  • Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329:23–28

    Article  PubMed  CAS  Google Scholar 

  • Danby R, Bluff L, Deheny TP, Gibson WR (1982) Effects of alloxan and streptozotocin at high doses on blood glucose levels, glucose tolerance, and responsiveness to sulphonylureas in chicks Gen Comp Endocrinol 47:159–169

    Article  PubMed  CAS  Google Scholar 

  • Datar Sp, Bhonde RR (2006) A simple technique for isolation of functional B islets from chick pancreas. J Cell Tissue Res 6(1):605–608

    Google Scholar 

  • Delaney CA, Dunger A, Di Matteo M, Cunningham JM, Green MH, Green IC (1995) Comparison of inhibition of glucose-stimulated insulin secretion in rat islets of Langerhans by streptozotocin and methyl and ethyl nitrosources and methanesulphonates. Lack of correlation with nitric oxide releasing or O6-alkylating ability. Biochem Pharmacol 50:2015–2020

    Article  PubMed  CAS  Google Scholar 

  • Eizirik DL, Pipeleers DG, Ling Z, Welsh N, Hellerstorm C, Anderson A (1994) Major species differences between humans and rodents in the susceptibility to pancreatic beta cell injury. Proc Natl Acad Sci USA A91:9253–9256

    Article  Google Scholar 

  • Elsner M, Guldbakke B, Tiedge M, Munday R, Lenzen S (2000) Relative importance of transport and alkylation for pancreatic beta-cell toxicity of streptozotocin. Diabetologia 43:1528–1533

    Article  PubMed  CAS  Google Scholar 

  • Gandy SE, Buse MG, Crouch RK (1982) Protective role of superoxide dismutase against diabetogenic drug. J clin Invest 70:650–658

    Article  PubMed  CAS  Google Scholar 

  • Goldberg DM, Spooner RJ (1983) Glutathione reductase. In: Bermeyer HU (ed) Methods of enzymatic analysis, vol 3. Verlagchemie GmbH, Weinhein, pp 258–265

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Antioxidant defenses. In: Free radicals in biology and medicine, 3rd edn. Oxford university press, Oxford, pp 146–148

  • Hazelwood RL (1984) Pancreatic hormones, insulin/glucagons molar ratios, and somatostatin as determinants of avian carbohydrate metabolism. J Exp Zool 232:647–652

    Article  PubMed  CAS  Google Scholar 

  • Hellsten Y, Tullson PC, Richter EA, Bangsbo J (1997) Oxidation of urate in human skeletal muscle during exercise. Free Radic Biol Med 22:169–174

    Article  PubMed  CAS  Google Scholar 

  • Jorns A, Munday R, Tiedge M, Lenzen S (1997) Comparative toxicity of alloxan, N-alkylalloxan and ninhydrin to isolated pancreatic islets in vitro. J Endocrinol 155:283–293

    Article  PubMed  CAS  Google Scholar 

  • Klandorf H, Rathore DS, Iqbal M, Shi X, Van Dyke K (2001) Accelerated tissue aging and increased oxidative stress in broiler chicks fed allopurinol. Comp Biochem Physiol C Toxicol Pharmacol 129:93–104

    Article  PubMed  CAS  Google Scholar 

  • Kroncke KD, Fehsel K, Sommur A, Rodriguez ML, Kolb-Bachofen V (1995) Nitric oxide generation during cellular metabolization of the diabetogenic N-Methyl-N-nitroso-urea streptozotocin contributes to islet cell DNA damage. Biol Chem Hoppe Seyler 376:179–185

    PubMed  CAS  Google Scholar 

  • Ku H, Sohal RS (1993) Comparison of mitochondrial prooxidant generation and antioxidant defenses in longevity and metabolic potential. Mech Ageing Dev 72:67–76

    Article  PubMed  CAS  Google Scholar 

  • Lacy PE, Kostianovsky M (1967) Method for the isolation of islet of Langerhans from the rat pancreas. Diabetes 16:35–39

    PubMed  CAS  Google Scholar 

  • Lawrence RA, Burk RF (1976) Glutathione peroxidase activity in selenium deficient rat liver. Biochem Biophys Res Commun 71:952–958

    Article  PubMed  CAS  Google Scholar 

  • Lefevre G, Beljean-Leymarie M, Beyerle F, Bonnefont-Rousselot D, Cristol JP, Therond P, Torreilles J (1998) Evaluation of lipid peroxidation by measuring thiobarbituric acid reactive substances. Ann Biol Clin Paris 56:305–319

    PubMed  CAS  Google Scholar 

  • Lortz S, Tiedge M, Nachtwey T, Karlsen AE, Nerup J, Lenzen S (2005) Protection of insulin-producing RINm5F cells against cytokine-mediated toxicity through over expression of antioxidant enzymes. Diabetes 49:1123–1130

    Google Scholar 

  • Mathews CE, Leiter EH (1999) Resistance of ALR/Lt islets to free radical-mediated diabetogenic stress in inherited as a dominant trait. Diabetes 48:2189–2196

    PubMed  CAS  Google Scholar 

  • Modak SP, Beard P (1980) Analysis of double and single strand breaks by two dimensional gel electrophoresis: action of micrococcal nuclease on chromatin and DNA and degradation in vivo of lens fiber chromatin. Nucleic Acids Res 8:2665–2669

    Article  PubMed  CAS  Google Scholar 

  • Mysore TB, Shinkel TA, Collins J, Salvaris EJ, Fisicaro N, Murray-Segal LJ, Johnson LE, Lepore DA, Walters SN, Stokes R, Chandra AP, O’Connell PJ, d’Apice AJ, Cowan PJ (2005) Over expression of glutathione peroxidase with two isoforms of superoxide dismutase protects mouse islets from oxidative injury and improves islet graft function. Diabetes 54:2109–2016

    PubMed  CAS  Google Scholar 

  • Nukatsuka M, Sakurai H, Yoshimura Y, Nishida M, Kawada J (1988) Enhancement by streptozotocin of O2 radicals generation by the xanthin oxidase system of pancreatic B cells. FEBS Lett 239:295–298

    Article  PubMed  CAS  Google Scholar 

  • Robertson RP, Tanaka Y, Takahashi H, Tran PO, Harmon JS (2005) Prevention of oxidative stress by adenoviral over expression of glutathione-related enzymes in pancreatic islets. Ann N Y Acad Sci 1043:513–520

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues B, Poucheret P, Battell ML, McNeill JH (1999) Streptozotocin-induced diabetes: induction, mechanism(s), and dose dependency. In: McNeil JH (eds) Experimental models of diabetes. CRC press, LLC pp 3–8

    Google Scholar 

  • Sagara Y, Dargush R, Chambers D, Davis J, Schubert D, Maher P (1998) Cellular mechanism of resistance to chronic oxidative stress. Free Radic Boil Med 24:1375–1389

    Article  CAS  Google Scholar 

  • Sandler S, Anderson A (1982) The partial protective effect of hydroxyl radical scavenger dimethylurea on streptozotocin induced diabetes in vitro and in vivo. Diabetologia 23:374–378

    Article  PubMed  CAS  Google Scholar 

  • Schnedl WJ, Ferber S, Johnson JH, Newgard CB (1994) STZ transport and cytotoxicity. Specific enhancement in GLUT2-expressing cells. Diabetes 43:1326–1333

    PubMed  CAS  Google Scholar 

  • Schweigrer FF, Uehlein-Harrell S, Von Hegel G, Weisner H (1991) Vitamin A (retinal and retinyl esters) α tocopherol and lipid levels in plasma of captive wild mammals and birds Zentralbl. Veterinarmed A 38:35–42

    Google Scholar 

  • Shapiro F, Mahagna M, Nir I (1997) Stunning syndrome in broilers: effect of glucose or maltose supplementation on digestive organs, intestinal disaccharides and some blood metabolites. Poult Sci 76:369–376

    PubMed  CAS  Google Scholar 

  • Shewade Y, Umarani M, Bhonde RR (1999) Large-scale isolation of islets by tissue culture of adult mouse pancreas. Transplant Proc 31:1721–1723

    Article  PubMed  CAS  Google Scholar 

  • Slonim AE, Surber ME, Page DE, Sharp RA, Burr IM (1983) Modification of chemically induce diabetes in rats by vitamin E: supplementation minimizes and depletion enhances development of diabetes. J Clin Invest 71:1282–1288

    PubMed  CAS  Google Scholar 

  • Stellenwerf WA Jr, Hazelwood RL (1979) Peripheral utilization of a glucose load after alloxan and streptozotocin in the rat and chick: a comparison. Gen Comp Endocrinol 39:131–140

    Article  PubMed  CAS  Google Scholar 

  • Szkudelski T (2001) The mechanism of Alloxan and Streptozotocin action in B cells of the rat pancreas. Physiol Res. 50:536–546

    Google Scholar 

  • Takasu N, Komiya I, Asawa T, Nagasama Y, Yamada T (1991) Streptozotocin and alloxan induced H2O2 generation and DNA fragmentation in pancreatic islets. H2O2 as a mediator for DNA fragmentation. Diabetes 40:1141–1145

    PubMed  CAS  Google Scholar 

  • Teixeira HD, Meneghini R (1996) Chinese hamster fibroblasts over expressing CuZn-superoxide dismutase undergo a global reduction in antioxidants and an increasing sensitivity of DNA to oxidative damage. Biochem J 315:821–825

    PubMed  CAS  Google Scholar 

  • Thulesen J, Orskov C, Holst JJ, Poulsen SS (1997) Short-term insulin treatment prevents the diabetogenic action of streptozotocin in rats. Endocrinology 138:62–68

    Article  PubMed  CAS  Google Scholar 

  • Tiedge M, Lortz S, Drinkgern J, Lenzen S (1997) Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 46:1733–1742

    PubMed  CAS  Google Scholar 

  • Tiedge M, Lortz S, Munday R, Lenzen S (1998) Complementary action of antioxidant enzymes in the protection of bioengineered insulin-producing RINm5F cells against the toxicity of reactive oxygen species. Diabetes 47:1578–1585

    PubMed  CAS  Google Scholar 

  • Uchigata Y, Yamamoto H, Kawamura A, Okamato H (1982) Protection by superoxide dismutase, catalase, and poly (ADP-ribose) synthetase inhibitors against Alloxan and Streptozotocin induced Islet DNA strand breaks and against the inhibition of Proinsulin synthesis. J Biol Chem 257:6084–6088

    PubMed  CAS  Google Scholar 

  • Warburton S, James R (1995) Hemocytometer cell counts and viability studies. In: Doyle A, Griffiths JB, Newell DG (eds) Cell and tissue culture: laboratory procedures, vol 4B. Wiley, New York, pp 1.1–1.5

    Google Scholar 

  • Yabuki M, Kariya S, Ishisaka R, Yasuda T, Yoshioka T, Horton AA, Utsumi K (1999) Resistance to nitric oxide—mediated apoptosis in HL-60 variant cells is associated with increased activities of Cu, Zn-superoxide dismutase and catalase. Free Radc Biol Med 26:325–332

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the financial assistance from UGC, New Delhi. The authors acknowledge financial support from DST–FIST and UGC-CAS program of the Department of Zoology. Manisha Modak is a recipient of SRF from Lady Tata Memorial Trust. Savita Datar is a recipient of Teachers’ fellowship from UGC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saroj S. Ghaskadbi.

Additional information

Communicated by H.V. Carey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Modak, M.A., Datar, S.P., Bhonde, R.R. et al. Differential susceptibility of chick and mouse islets to streptozotocin and its co-relation with islet antioxidant status. J Comp Physiol B 177, 247–257 (2007). https://doi.org/10.1007/s00360-006-0126-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-006-0126-3

Keywords

Navigation