Skip to main content
Log in

Mixture and odorant processing in the olfactory systems of insects: a comparative perspective

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Natural olfactory stimuli are often complex mixtures of volatiles, of which the identities and ratios of constituents are important for odor-mediated behaviors. Despite this importance, the mechanism by which the olfactory system processes this complex information remains an area of active study. In this review, we describe recent progress in how odorants and mixtures are processed in the brain of insects. We use a comparative approach toward contrasting olfactory coding and the behavioral efficacy of mixtures in different insect species, and organize these topics around four sections: (1) Examples of the behavioral efficacy of odor mixtures and the olfactory environment; (2) mixture processing in the periphery; (3) mixture coding in the antennal lobe; and (4) evolutionary implications and adaptations for olfactory processing. We also include pertinent background information about the processing of individual odorants and comparative differences in wiring and anatomy, as these topics have been richly investigated and inform the processing of mixtures in the insect olfactory system. Finally, we describe exciting studies that have begun to elucidate the role of the processing of complex olfactory information in evolution and speciation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AL:

Antennal lobe

AN:

Antennal nerve

GABA:

γ-Aminobutyric acid

LH:

Lateral horn of the protocerebrum

LN:

Local interneuron

eLN:

Excitatory local interneuron

iLN:

Inhibitory local interneuron

MB:

Mushroom bodies

MGC:

Macroglomerular complex

OB:

Olfactory bulb

OR:

Olfactory receptor

OBP:

Odorant binding protein

ORC:

Olfactory receptor cell

PN:

Projection neuron

References

  • Acebes A, Martin-Pena A, Chevalier V, Ferrus A (2011) Synapse loss in olfactory local interneurons modifies perception. J Neurosci 31:2734–2745

    PubMed  CAS  Google Scholar 

  • Andersson MN, Larsson MC, Blazenec M, Jakus R, Zhang Q-H, Schlyter F (2010) Peripheral modulation of pheromone response by inhibitory host compound in a beetle. J Exp Biol 213:3332–3339

    PubMed  CAS  Google Scholar 

  • Anton S, Homberg U (1999) Antennal lobe structure. In: Hansson B (ed) Insect olfaction. Springer, Berlin, pp 97–124

    Google Scholar 

  • Anton S, Ignell R, Hansson BS (2002) Developmental changes in the structure and function of the central olfactory system in gregarious and solitary desert locusts. Microsc Res Tech 56:281–291

    PubMed  Google Scholar 

  • Assisi C, Stopfer M, Bazhenov M (2012) Excitatory local interneurons enhance tuning of sensory information. PLoS Comp Biol 8:e1002563

    CAS  Google Scholar 

  • Ayasse M, Schiestl FP, Paulus HF, Löfstedt C, Hansson B, Ibarra F, Francke W (2000) Evolution of reproductive strategies in the sexually deceptive orchid Ophrys sphegodes: how does flower-specific variation of odor signals influence reproductive success? Evolution 54:1995–2006

    PubMed  CAS  Google Scholar 

  • Baker TC (2008) Balanced olfactory antagonism as a concept for understanding evolutionary shifts in moth sex pheromone blends. J Chem Ecol 34:971–981

    PubMed  CAS  Google Scholar 

  • Bargmann CI (2006) Comparative chemosensation from receptors to ecology. Nature 444:295–301

    PubMed  CAS  Google Scholar 

  • Barrozo RB, Jarriault D, Simeone X, Gaertner C, Gadenne C, Anton S (2010) Mating-induced transient inhibition of responses to sex pheromone in a male moth is not mediated by octopamine or serotonin. J Exp Biol 213:1100–1106

    PubMed  CAS  Google Scholar 

  • Bartelt RJ, Schaner AM, Jackson LL (1985) Cis-vaccenyl acetate as an aggregation pheromone in Drosophila melanogaster. J Chem Ecol 11:1747–1756

    CAS  Google Scholar 

  • Behmer ST, Belt CE, Shapiro MS (2005) Variable rewards and discrimination ability in an insect herbivore: what and how does a hungry locust learn? J Exp Biol 208:3463–3473

    PubMed  Google Scholar 

  • Benton R (2006) On the origin of smell: odorant receptors in insects. Cell Mol Life Sci 63:1579–1585

    PubMed  CAS  Google Scholar 

  • Benton R, Sachse S, Michnick SW, Vosshall LB (2006) Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol 4:240–257

    CAS  Google Scholar 

  • Bhandawat V, Olsen SR, Gouwens NW, Schlief ML, Wilson RI (2007) Sensory processing in the Drosophila antennal lobe increases the reliability and separability of ensemble odor representations. Nat Neurosci 10:1474–1482

    PubMed  CAS  Google Scholar 

  • Bleeker MAK, Smid HM, Steidle JLM, Kruidhof HM, Van Loon JJA (2006) Differences in memory dynamics between two closely related parasitoid wasp species. Anim Behav 71:1343–1350

    Google Scholar 

  • Brill MF, Rosenbaum T, Reus I, Kleineidam CJ, Nawrot MP, Rössler W (2013) Parallel processing via a dual olfactory pathway in the honeybee. J Neurosci 33:2443–2456

    PubMed  CAS  Google Scholar 

  • Carcaud J, Hill T, Giurfa M, Sandoz J-C (2012) Differential coding by two olfactory subsystems in the honeybee brain. J Neurophysiol 108:1106–1121

    PubMed  Google Scholar 

  • Carey AF, Carlson JR (2011) Insect olfaction from model systems to disease control. Proc Nat Acad Sci USA 108:12987–12995

    PubMed  CAS  Google Scholar 

  • Carr W, Derby CD (1986) Chemically stimulated feeding-behavior in marine animals—importance of chemical-mixtures and involvement of mixture interactions. J Chem Ecol 12:989–1011

    CAS  Google Scholar 

  • Chaffiol A, Kropf J, Barroxo RB, Gadenne C, Rospars J-P, Anton S (2012) Plant odour stimuli reshape pheromonal representation in neurons of the antennal lobe macroglomerular complex of a male moth. J Exp Biol 215:1670–1680

    PubMed  Google Scholar 

  • Chittka L, Raine NE (2006) Recognition of flowers by pollinators. Curr Opin Plant Biol 9:428–435

    PubMed  Google Scholar 

  • Chou YH, Spletter ML, Yaksi E, Leong JC, Wilson RI, Luo L (2010) Diversity and wiring variability of olfactory local interneurons in the Drosophila antennal lobe. Nat Neurosci 13:439–449

    PubMed  CAS  Google Scholar 

  • Choudhary AF, Laycock I, Wright GA (2012) Gamma-aminobutyric acid receptor A-mediated inhibition in the honeybee’s antennal lobe is necessary for the formation of configural olfactory percepts. Eur J Neurosci 35:1718–1724

    PubMed  Google Scholar 

  • Christensen TA, Mustaparta H, Hildebrand JG (1989) Discrimination of sex pheromone blends in the olfactory system of the moth. Chem Senses 14(3):463–477

    CAS  Google Scholar 

  • Christensen TA, Mustaparta H, Hildebrand JG (1991) Chemical communication in heliothine moths 2. Central processing of intraspecific and interspecific olfactory message in the male corn-earworm Helicoverpa zea. J Comp Physiol A 169:259–274

    Google Scholar 

  • Christensen TA, Lei H, Hildebrand JG (2003) Coordination of central odor representations through transient non-oscillatory synchronization of glomerular output neurons. Proc Nat Acad Sci USA 100:11076–11081

    PubMed  CAS  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Sunderland

    Google Scholar 

  • Dacks AM, Nighorn AJ (2011) The organization of the antennal lobe correlates not only with phylogenetic relationship, but also life history: a basal hymenopteran as exemplar. Chem Senses 36:209–220

    PubMed  Google Scholar 

  • Dacks AM, Christensen TA, Hildebrand JG (2008) Modulation of olfactory information processing in the antennal lobe of Manduca sexta. J Neurophysiol 99:2077–2085

    PubMed  CAS  Google Scholar 

  • Dacks AM, Riffell JA, Martin JP, Gage SL, Nighorn AJ (2012) Olfactory modulation by dopamine in the context of aversive learning. J Neurophysiol 108:539–550

    PubMed  CAS  Google Scholar 

  • Daly KC, Christensen TA, Lei H, Smith BH, Hildebrand JG (2004) Learning modulates the ensemble representations for odors in primary olfactory networks. Proc Natl Acad Sci USA 101:10476–10481

    PubMed  CAS  Google Scholar 

  • Daniel PC, Derby CD (1991) Mixture suppression in behavior—the antennular flick response in the spiny lobster towards binary odorant mixtures. Physiol Behav 49:591–601

    PubMed  CAS  Google Scholar 

  • de Bruyne M, Baker TC (2008) Odor detection in insects: volatile codes. J Chem Ecol 34:882–897

    PubMed  CAS  Google Scholar 

  • de Bruyne M, Foster K, Carlson JF (2001) Odor coding in the Drosophila antenna. Neuron 30:537–552

    PubMed  Google Scholar 

  • Deisig N, Lachnit H, Giurfa M (2002) The effect of similarity between elemental stimuli and compounds in olfactory patterning discriminations. Learn Memory 9:112–121

    Google Scholar 

  • Deisig N, Giurfa M, Lachnit H, Sandoz JC (2006) Neural representation of olfactory mixtures in the honeybee antennal lobe. Eur J Neurosci 24(4):1161–1174

    PubMed  Google Scholar 

  • Deisig N, Giurfa M, Sandoz JC (2010) Antennal lobe processing increases separability of odor mixture representations in the honeybee. J Neurophysiol 103(4):2185–2194

    PubMed  Google Scholar 

  • Deisig N, Kropf J, Vitecek S, Pevergne D, Rouyar A, Sandoz J-C, Lucas P, Gadenne C, Anton S, Barrozo R (2012) Differential interactions of sex pheromone and plant odour in the olfactory pathway of a male moth. PLoS ONE 7:e33159

    PubMed  CAS  Google Scholar 

  • Dekker T, Steib B, Carde RT, Geier M (2002) l-lactic acid: a human-signifying host cue for the anthropophilic mosquito Anopheles gambiae. Med Vet Entomol 16:91–98

    PubMed  CAS  Google Scholar 

  • Dekker T, Ibba I, Siju KP, Stensymyr MC, Hansson BS (2006) Olfactory shifts parallel superspecialism for toxic fruit in Drosophila melanogaster sibling. D. sechellia. Curr Biol 16:101–109

    PubMed  CAS  Google Scholar 

  • Derby CD (2000) Learning from spiny lobsters about chemosensory coding of mixtures. Physiol Behav 69:203–209

    PubMed  CAS  Google Scholar 

  • Derby CD, Hamilton KA, Ache BW (1984) Processing of olfactory information at 3 neuronal levels in the spiny lobster. Brain Res 300:311–319

    PubMed  CAS  Google Scholar 

  • Derby CD, Ache BW, Kennel EW (1985) Mixture suppression in olfaction—electrophysiological evaluation of the contribution of peripheral and central neural components. Chem Senses 10:301–316

    Google Scholar 

  • Derby CD, Girardot MN, Daniel PC (1991a) Responses of olfactory receptor cells of spiny lobsters to binary mixtures. 1. Intensity mixture interactions. J Neurophysiol 66:112–130

    PubMed  CAS  Google Scholar 

  • Derby CD, Girardot MN, Daniel PC (1991b) Responses of olfactory receptor cells of spiny lobsters to binary mixtures. 2. Pattern mixture interactions. J Neurophysiol 66:131–139

    PubMed  CAS  Google Scholar 

  • Ejima A, Smith BPC, Lucas C, Van Naters WV, Miller CJ, Carlson JR, Levine JD, Griffith LC (2007) Generalization of courtship learning in Drosophila is mediated by cis-vaccenyl acetate. Curr Biol 17:599–605

    PubMed  CAS  Google Scholar 

  • Ellen CW, Mercer AR (2012) Modulatory actions of dopamine and serotonin on insect antennal lobe neurons: insights from studies in vitro. J Mol Histol 43:401–404

    PubMed  CAS  Google Scholar 

  • El-Sayed AM (2012) The pherobase: database of pheromones and semiochemicals. http://www.pherobase.com

  • Eschbach C, Vogt K, Schmuker M, Gerber B (2011) The similarity between odors and their binary mixtures in Drosophila. Chem Senses 36:613–621

    PubMed  Google Scholar 

  • Farine JP, Legal L, Moreteau B, LeQuere JL (1996) Volatile components of ripe fruits of Morinda citrifolia and their effects on Drosophila. Phytochem 41:433–438

    CAS  Google Scholar 

  • Ferveur JF (2005) Cuticular hydrocarbons: their evolution and roles in Drosophila pheromonal communication. Behav Genet 35:279–295

    PubMed  Google Scholar 

  • Finelevy JB, Derby CD (1992) Behavioral discrimination of binary mixtures and their components—effects of mixture interactions on coding of stimulus-intensity and quality. Chem Senses 17:307–323

    CAS  Google Scholar 

  • Frambach I, Schurmann FW (2004) Separate distribution of deutocerebral projection neurons in the mushroom bodies of the cricket brain. Acta Biol Hung 55:21–29

    PubMed  Google Scholar 

  • Galizia CG, Rossler W (2010) Parallel olfactory systems in insects: anatomy and function. Annu Rev Entomol 55:399–420

    PubMed  CAS  Google Scholar 

  • Galizia CG, Szyszka P (2008) Olfactory coding in the insect brain: molecular receptive ranges, spatial and temporal coding. Entomol Exp Appl 128:81–92

    Google Scholar 

  • Galizia CG, Nagler K, Hölldobler B, Menzel R (1998) Odour coding is bilaterally symmetrical in the antennal lobes of honeybees (Apis mellifera). Eur J Neurosci 10:2964–2974

    PubMed  CAS  Google Scholar 

  • Galizia CG, McIlwrath SL, Menzel R (1999) A digital three-dimensional atlas of the honeybee antennal lobe based on optical sections acquired by confocal microscopy. Cell Tissue Res 295:383–394

    PubMed  CAS  Google Scholar 

  • Galizia CG, Franke T, Menzel R, Sandoz JC (2012) Optical imaging of concealed brain activity using a gold mirror in honeybees. J Insect Physiol 58:743–749

    PubMed  CAS  Google Scholar 

  • Gentilcore LR, Derby CD (1998) Complex binding interactions between multicomponent mixtures and odorant receptors in the olfactory organ of the Caribbean spiny lobster Panulirus argus. Chem Senses 23:269–281

    PubMed  CAS  Google Scholar 

  • Guerenstein PG, Hildebrand JG (2008) Roles and effects of environmental carbon dioxide in insect life. Annu Rev Entomol 53:161–178

    PubMed  CAS  Google Scholar 

  • Ha TS, Smith DP (2006) A pheromone receptor mediates 11-cis-vaccenyl acetate-induced responses in Drosophila. J Neurosci 26:8728–8733

    Google Scholar 

  • Hansson BS, Stensmyr MC (2011) Evolution of insect olfaction. Neuron 72:698–711

    PubMed  CAS  Google Scholar 

  • Hansson BS, Ochieng’ SA, Grosmaitre X, Anton S, Njagi PGN (1996) Physiological responses and central nervous projections of antennal olfactory receptor neurons in the adult desert locust, Schistocerca gregaria (Orthoptera: Acrididae). J Comp Physiol A 179:157–167

    CAS  Google Scholar 

  • Hartlieb E, Anton S, Hansson BS (1997) Dose-dependent response characteristics of antennal lobe neurons in the male moth Agrotis segetum (Lepidoptera: Noctuidae). J Comp Physiol A 181:469–476

    Google Scholar 

  • Heil JE, Oland LA, Lohr C (2007) Acetylcholine-mediated axon-glia signaling in the developing insect olfactory system. E J Neurosci 26:1227–1241

    Google Scholar 

  • Heinbockel T, Kloppenburg P, Hildebrand JG (1998) Pheromone-evoked potentials and oscillations in the antennal lobes of the sphinx moth Manduca sexta. J Comp Physiol A 182:703–714

    PubMed  CAS  Google Scholar 

  • Hildebrand JG, Shepherd GM (1997) Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu Rev Neurosci 20:595–631

    PubMed  CAS  Google Scholar 

  • Hunt GJ (2007) Flight and fight: a comparative view of the neurophysiology and genetics of honey bee defensive behavior. J Insect Physiol 53:399–410

    PubMed  CAS  Google Scholar 

  • Ibba I, Angioy AM, Hansson BS, Dekker T (2010) Macroglomeruli for fruit odors change blend preference in Drosophila. Naturwissenschaften 97:1059–1066

    PubMed  CAS  Google Scholar 

  • Ignell R, Anton S, Hansson BS (2001) The antennal lobe of Orthoptera—anatomy and evolution. Brain Behav Evol 57:1–17

    PubMed  CAS  Google Scholar 

  • Ignell R, Dekker T, Ghaninia M, Hansson BS (2005) Neuronal architecture of the mosquito deutocerebrum. J Comp Neurol 493:207–240

    PubMed  Google Scholar 

  • Ito I, Bazhenov M, Ong RCY, Raman B, Stopfer M (2009) Frequency transitions in odor-evoked neural oscillations. Neuron 64:692–706

    PubMed  CAS  Google Scholar 

  • Jones CD (1998) The genetic basis of Drosophila sechellia’s resistance to a host plant toxin. Genetics 149(4):1899–1908

    PubMed  CAS  Google Scholar 

  • Kalberer NM, Reisenman CE, Hildebrand JG (2010) Male moths bearing transplanted female antennae express characteristically female behaviour and central neural activity. J Exp Biol 213:1272–1280

    PubMed  CAS  Google Scholar 

  • Karpati Z, Olsson S, Hansson B, Dekker T (2010) Inheritance of central neuroanatomy and physiology related to pheromone preference in the male European corn borer. BMC Evol Biol 10:286

    Google Scholar 

  • Kazama H, Wilson RI (2008) Homeostatic matching and nonlinear amplification at identified central synapses. Neuron 58:401–418

    PubMed  CAS  Google Scholar 

  • Kloppenburg P, Mercer AR (2008) Serotonin modulation of moth central olfactory neurons. Annu Rev Entomol 53:179–190

    PubMed  CAS  Google Scholar 

  • Kloppenburg P, Ferns D, Mercer AR (1999) Serotonin enhances central olfactory neuron responses to female sex pheromone in the male sphinx moth Manduca sexta. J Neurosci 19:8172–8181

    PubMed  CAS  Google Scholar 

  • Kollmann M, Ninolis S, Bonhomme J, Homberg U, Schactner J, Taju D, Anton S (2011) Revisiting the anatomy of the central nervous system of a hemimetabolous model insect: the pea aphid Acyrthosiphon pisum. Cell Tissue Res 343:343–355

    PubMed  Google Scholar 

  • Kuebler LS, Olsson SB, Weniger R, Hansson BS (2011) Neuronal processing of complex mixtures establishes a unique odor representation in the moth antennal lobe. Front Neural Circuits 5:16

    Google Scholar 

  • Kuebler LS, Schubert M, Karpati Z, Hansson BS, Olsson SB (2012) Antennal lobe processing correlates to moth olfactory behavior. J Neurosci 32:5772–5782

    PubMed  CAS  Google Scholar 

  • Laurent G (2002) Olfactory network dynamics and the coding of multidimensional signals. Nat Rev Neurosci 3:884–895

    PubMed  CAS  Google Scholar 

  • Le Conte Y, Hefetz A (2008) Primer pheromones in social hymenoptera. Ann Rev Entomol 53:523–542

    Google Scholar 

  • Lei H, Vickers N (2008) Central processing of natural odor mixtures in insects. J Chem Ecol 34:915–927

    PubMed  CAS  Google Scholar 

  • Lei H, Christensen TA, Hildebrand JG (2002) Local inhibition modulates odor-evoked synchronization of glomerulus-specific output neurons. Nat Neurosci 5:557–565

    PubMed  CAS  Google Scholar 

  • Linn C, Feder JL, Nojima S, Dambroski HR, Berlocher SH, Roelofs W (2003) Fruit odor discrimination and sympatric host race formation in Rhagoletis. Proc Natl Acad Sci USA 100:11490–11493

    PubMed  CAS  Google Scholar 

  • Linn C, Nojima S, Roelofs W (2005) Antagonist effects of non-host fruit volatiles on discrimination of host fruit by Rhagoletis flies infesting apple (Malus pumila), hawthorn (Crataegus spp.), and flowering dogwood (Cornus florida). Entomol Exp App 114:97–105

    CAS  Google Scholar 

  • Linn CE, Yee WL, Sim SB, Cha DH, Powell THQ, Goughnour RB, Feder JL (2012) Behavioral evidence for fruit odor discrimination and sympatric host races of Rhagoletis pomonella flies in the western United States. Evolution 66:3632–3641

    PubMed  Google Scholar 

  • Linster C, Sachse S, Galizia CG (2005) Computational modeling suggests that response properties rather than spatial position determine connectivity between olfactory glomeruli. J Neurophysiol 93:3410–3417

    PubMed  Google Scholar 

  • Livermore A, Hutson M, Ngo V, Hadjisimos R, Derby CD (1997) Elemental and configural learning and the perception of odorant mixtures by the spiny lobster Panulirus argus. Physiol Behav 62:169–174

    PubMed  CAS  Google Scholar 

  • MacLeod K, Laurent G (1996) Distinct mechanisms for synchronization and temporal patterning of odor-encoding neural assemblies. Science 274:976–979

    PubMed  CAS  Google Scholar 

  • Martin JP, Beyerlein A, Dacks AM, Reisenman CE, Riffell JA, Lei H, Hildebrand JG (2011) The neurobiology of insect olfaction: sensory processing in a comparative context. Prog Neurobiol 95:427–447

    PubMed  Google Scholar 

  • Matsumoto SG, Hildebrand JG (1981) Olfactory mechanisms in the moth Manduca sexta—response characteristics and morphology of central neurons in the antennal lobe. Proc R Soc B 213:249–277

    CAS  Google Scholar 

  • Matsuo T, Sugaya S, Yasukawa J, Aigaki T, Fuyama Y (2007) Odorant-binding proteins OBP57d and OBP57e affect taste perception and host-plant preference in Drosophila sechellia. PLoS Biol 5:e118

    PubMed  Google Scholar 

  • McPheron BA, Smith DC, Berlocher SH (1988) Genetic differences between host races of Rhagoletis pomonella. Nature 336:64–66

    Google Scholar 

  • Meyer A, Galizia CG (2012) Elemental and configural olfactory coding by antennal lobe neurons of the honeybee (Apis mellifera). J Comp Physiol A 198:159–171

    Google Scholar 

  • Münch D, Schmeichel B, Silbering AF, Galizia CG (2013) Weaker ligands can dominate an odor blend due to syntopic interactions. Chem Senses doi:10.1093/chemse/bjs138

  • Namiki S, Iwabuchi S, Kanzaki R (2008) Representation of a mixture of pheromone and host plant odor by antennal lobe projection neurons of the silkmoth Bombyx mori. J Comp Physiol A 194:501–515

    CAS  Google Scholar 

  • Nässel DR, Winther AM (2010) Drosophila neuropeptides in regulation of physiology and behavior. Prog Neurobiol 92:42–104

    PubMed  Google Scholar 

  • Neupert S, Fusca D, Schachtner J, Kloppenburg P, Predel R (2012) Toward a single-cell-based analysis of neuropeptide expression in Periplaneta americana antennal lobe neurons. J Comp Neurol 520:694–716

    PubMed  CAS  Google Scholar 

  • Nojima S, Linn CE, Zhang A, Morris B, Roelofs WL (2003a) Identification of host fruit volatiles from hawthorn (Crataegus spp.) attractive to hawthorn-origin Rhagoletis pomonella flies. J Chem Ecol 29:319–334

    Google Scholar 

  • Nojima S, Linn CE, Roelofs WL (2003b) Identification of host fruit volatiles from flowering dogwood (Cornus florida) attractive to dogwood-origin Rhagoletis pomonella flies. J Chem Ecol 29:2347–2357

    PubMed  CAS  Google Scholar 

  • Ochieng SA, Hallberg E, Hansson BS (1998) Fine structure and distribution of antennal sensilla of the desert locust, Schistocerca gregaria (Orthoptera: Acrididae). Cell Tissue Res 291:525–536

    PubMed  CAS  Google Scholar 

  • Ochieng SA, Park K, Baker T (2002) Host plant volatiles synergize responses of sex pheromone-specific olfactory receptor neurons in male Helicoverpa zea. J Comp Physiol A 188:325–333

    CAS  Google Scholar 

  • Oland LA, Tolbert LP (1987) Glial patterns during early development of antennal lobe of Manduca sexta—a comparison between normal lobes and lobes deprived of antennal axon. J Comp Neurol 255:196–207

    PubMed  CAS  Google Scholar 

  • Oland LA, Tolbert LP (1996) Multiple factors shape development of olfactory glomeruli: insights from an insect model system. J Neurobiol 30:92–109

    PubMed  CAS  Google Scholar 

  • Olsen SR, Wilson RI (2008) Lateral presynaptic inhibition mediates gain control in an olfactory circuit. Nature 452:956–960

    PubMed  CAS  Google Scholar 

  • Olsen SR, Bhandawat V, Wilson RI (2007) Excitatory interactions between olfactory processing channels in the Drosophila antennal lobe. Neuron 54:89–103

    PubMed  CAS  Google Scholar 

  • Olsson SB, Linn CE, Michel A, Dambroski HR, Berlocher SH, Feder JL, Roelofs WL (2006a) Receptor expression and sympatric speciation: unique olfactory receptor neuron responses in F-1 hybrid Rhagoletis populations. J Exp Biol 209:3729–3741

    PubMed  CAS  Google Scholar 

  • Olsson S, Linn CE, Roelofs WI (2006b) The chemosensory basis for behavioral divergence involved in sympatric host shifts I: characterizing olfactory receptor neuron classes responding to key host volatiles. J Comp Physiol A 192:289–300

    Google Scholar 

  • Olsson S, Linn CE, Roelofs WI (2006c) The chemosensory basis for behavioral divergence involved in sympatric host shifts II: olfactory receptor neuron sensitivity and temporal firing pattern to key host volatiles. J Comp Physiol A 192:289–300

    Google Scholar 

  • Party V, Hanot C, Said I, Rochat D, Renou M (2009) Plant terpenes affect intensity and temporal parameters of pheromone detection in a moth. Chem Senses 34:763–774

    PubMed  CAS  Google Scholar 

  • Peakall R (1990) Responses of male Zaspilothynnus trilobatus Turner wasps to females and the sexually deceptive orchid it pollinates. Funct Ecol 4:159–167

    Google Scholar 

  • Perez-Orive J, Mazor O, Turner GC, Cassenaer S, Wilson RI, Laurent G (2002) Oscillations and sparsening of odor representations in the mushroom body. Science 297:359–365

    PubMed  CAS  Google Scholar 

  • Pitts RJ, Fox AN, Zwiebel LJ (2004) A highly conserved candidate chemoreceptor expressed in both olfactory and gustatory tissues in the malaria vector Anopheles gambiae. Proc Natl Acad Sci USA 101:5058–5063

    PubMed  CAS  Google Scholar 

  • Qiu YT, van Loon JJA, Takken W, Meijerink J, Smid HM (2006) Olfactory coding in antennal neurons of the malaria mosquito, Anopheles gambiae. Chem Senses 31:845–863

    PubMed  CAS  Google Scholar 

  • Raguso RA, Henzel C, Buchmann SL (2003) Trumpet flowers of the Sonoran Desert: floral biology of Peniocereus cacti and sacred Datura. Int J Plant Sci 164:877–892

    CAS  Google Scholar 

  • Reinhard J, Sinclair M, Srinivasan MV, Claudianos C (2010) Honeybees learn odour mixtures via a selection of key odorants. PLoS ONE 5:e9110

    PubMed  Google Scholar 

  • Riffell JA (2012) Olfactory ecology and the processing of complex mixtures. Curr Opin Neurobiol 22:236–242

    PubMed  CAS  Google Scholar 

  • Riffell JA, Abrell L, Hildebrand JG (2008) Physical processes and real-time chemical measurement of the insect olfactory environment. J Chem Ecol 34:837–853

    PubMed  CAS  Google Scholar 

  • Riffell JA, Lei H, Christensen TA, Hildebrand JG (2009a) Characterization and coding of behaviorally significant odor mixtures. Curr Biol 19:335–340

    PubMed  CAS  Google Scholar 

  • Riffell JA, Lei H, Hildebrand JG (2009b) Neural correlates of behavior in the moth Manduca sexta in response to complex odors. Proc Natl Acad Sci USA 106:19219–19226

    PubMed  CAS  Google Scholar 

  • Riffell JA, Hong L, Abrell L, Hildebrand JG (2013) Neural basis of a pollinator’s buffet: olfactory specialization and learning in Manduca sexta. Science 339:200–204

    PubMed  CAS  Google Scholar 

  • Robertson HM, Wanner KW (2006) The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome Res 16:1395–1403

    PubMed  CAS  Google Scholar 

  • Robertson HM, Warr CG, Carlson JR (2003) Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc Natl Acad Sci USA 100:14537–14542

    PubMed  CAS  Google Scholar 

  • Robertson HM, Gadau J, Wanner KW (2010) The insect chemoreceptor superfamily of the parasitoid jewel wasp Nasonia vitripennis. Insect Mol Biol 19:121–136

    PubMed  CAS  Google Scholar 

  • Roelofs WL, Liu WT, Hao GX, Jiao HM, Rooney AP, Linn CE (2002) Evolution of moth sex pheromones via ancestral genes. Proc Natl Acad Sci USA 99:13621–13626

    PubMed  CAS  Google Scholar 

  • Root CM, Semmelhack JL, Wong AM, Flores J, Wang JW (2007) Propagation of olfactory information in Drosophila. Proc Natl Acad Sci USA 104:11826–11831

    PubMed  CAS  Google Scholar 

  • Rospars JP, Chambille I (1985) Neurons and identified glomeruli of antennal lobes during postembryonic development in the cockroach Blaberus caniifer Burn (Dictyoptera: Blaberidae). Int J Insect Morphol Embryol 14:203–226

    Google Scholar 

  • Rospars JP, Hildebrand JG (1992) Anatomical identification of glomeruli in the antennal lobes of the male sphinx moth Manduca sexta. Cell Tissue Res 270:205–227

    PubMed  CAS  Google Scholar 

  • Rössler W, Brill M (2013) Parallel processing in the honeybee olfactory pathway: structure, function and evolution. J Comp Physiol A (this issue). doi:10.1007/s00359-013-0821-y

  • Rössler W, Randolph PW, Tolbert LP, Hildebrand JG (1999) Axons of olfactory receptor cells of transsexually grafted antennae induce development of sexually dimorphic glomeruli in Manduca sexta. J Neurobiol 38:521–541

    PubMed  Google Scholar 

  • Rouyar A, Party V, Prešern J, Blejec A, Renou M (2011) A general odorant background affects the coding of pheromone stimulus intermittency in specialist olfactory receptor neurones. PLoS ONE 6:e26443

    PubMed  CAS  Google Scholar 

  • Sachse S, Galizia CG (2002) Role of inhibition for temporal and spatial odor representation in olfactory output neurons: a calcium imaging study. J Neurophysiol 87:1106–1117

    PubMed  Google Scholar 

  • Sachse S, Galizia CG (2006) Topography and dynamics of the olfactory system. In: Grillner S, Graybiel AM (eds) Microcircuits: the interface between neurons and global brain function. Dahlem UP–MIT, Cambridge, pp 251–274

    Google Scholar 

  • Schiestl FP, Ayasse M, Paulus HF, Löfstedt C, Hansson BS, Ibarra F, Francke W (1999) Orchid pollination by sexual swindle. Nature 399:421

    CAS  Google Scholar 

  • Schiestl FP, Peakall R, Mant JG, Ibarra F, Schulz C, Franke S, Francke W (2003) The chemistry of sexual deception in an orchid-wasp pollination system. Science 302:437–438

    PubMed  CAS  Google Scholar 

  • Schmuker M, Schneider G (2007) Processing and classification of chemical data inspired by insect olfaction. Proc Natl Acad Sci USA 104:20285–20289

    PubMed  CAS  Google Scholar 

  • Schneiderman AM, Matsumoto SG, Hildebrand JG (1982) Trans-sexually granted antennae influence development of sexually dimorphic neurons in moth brain. Nature 298:844–846

    Google Scholar 

  • Schwaerzel M, Monastirioti M, Scholz H, Friggi-Grelin F, Birman S, Heisenberg M (2003) Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila. J Neurosci 23:10495–10502

    PubMed  CAS  Google Scholar 

  • Silbering AF, Galizia CG (2007) Processing of odor mixtures in the Drosophila antennal lobe reveals both global inhibition and glomerulus-specific interactions. J Neurosci 27:11966–11977

    PubMed  CAS  Google Scholar 

  • Silbering AF, Okada R, Ito K, Galizia CG (2008) Olfactory information processing in the Drosophila antennal lobe: anything goes? J Neurosci 28:13075–13087

    PubMed  CAS  Google Scholar 

  • Siwicki KK, Riccio P, Ladewski L, Marcillac F, Dartevelle L, Cross SA, Ferveur JF (2005) The role of cuticular pheromones in courtship conditioning of Drosophila males. Learn Memory 12:636–645

    Google Scholar 

  • Slessor KN, Winston ML, Le Conte Y (2005) Pheromone communication in the honeybee (Apis mellifera L.). J Chem Ecol 31:2731–2745

    PubMed  CAS  Google Scholar 

  • Smid HM, Wang GH, Bukovinszky T, Steidle JLM, Bleeker MAK, Van Loon JJA, Vet LEM (2007) Species-specific acquisition and consolidation of long-term memory in parasitic wasps. Proc R Soc B 274:1539–1546

    PubMed  Google Scholar 

  • Stocker RF (1994) The organization of the chemosensory system in Drosophila melanogaster—a review. Cell Tissue Res 275:3–26

    PubMed  CAS  Google Scholar 

  • Stocker RF, Lienhard MC, Borst A, Fischbach KF (1990) Neuronal architecture of the antennal lobe in Drosophila melanogaster. Cell Tissue Res 262:9–34

    PubMed  CAS  Google Scholar 

  • Strausfeld NJ (2012) Arthropod brains: evolution, functional elegance, and historical significance. Harvard University Press, Cambridge

    Google Scholar 

  • Strauss K, Scharpenberg H, Crewe RM, Glahn F, Foth H, Moritz RFA (2008) The role of the queen mandibular gland pheromone in honeybees (Apis mellifera): honest signal or suppressive agent? Behav Ecol Sociobiol 62:1523–1531

    Google Scholar 

  • Su CY, Menuz K, Carlson JR (2009) Olfactory perception: receptors, cells, and circuits. Cell 139:45–59

    PubMed  CAS  Google Scholar 

  • Su CY, Martelli C, Emonet T, Carlson JR (2011) Temporal coding of odor mixtures in an olfactory receptor neuron. Proc Natl Acad Sci USA 108:5075–5080

    PubMed  CAS  Google Scholar 

  • Su CY, Menuz K, Reisert J, Carlson JR (2012) Non-synaptic inhibition between grouped neurons in an olfactory circuit. Nature 492:66

    PubMed  CAS  Google Scholar 

  • Sun XJ, Fonta C, Masson C (1993) Odor quality processing by bee antennal lobe interneurons. Chem Senses 18:355–377

    CAS  Google Scholar 

  • Tanaka NK, Ito K, Stopfer M (2009) Odor-evoked neural oscillations in Drosophila are mediated by widely branching interneurons. J Neurosci 29:8595–8603

    PubMed  CAS  Google Scholar 

  • Tasin M, Backman AC, Bengtsson M, Varela N, Ioriatti C, Witzgall P (2006) Wind tunnel attraction of grapevine moth females, Lobesia botrana, to natural and artificial grape odour. Chemoecol 16:87–92

    CAS  Google Scholar 

  • Thom C, Gilley DC, Hooper J, Esch HE (2007) The scent of the waggle dance. PLoS Biol 5(9):1862–1867

    CAS  Google Scholar 

  • Trona F, Anfora G, Bengtsson M, Witzgall P, Ignell R (2010) Coding and interaction of sex pheromone and plant volatile signals in the antennal lobe of the codling moth Cydia pomonella. J Exp Biol 213:4291–4303

    PubMed  CAS  Google Scholar 

  • Utz S, Huetteroth W, Wegener C, Kahnt J, Predel R, Schachtner J (2007) Direct peptide profiling of lateral cell groups of the antennal lobes of Manduca sexta reveals specific composition and changes in neuropeptide expression during development. Dev Neurobiol 67:764–777

    PubMed  CAS  Google Scholar 

  • van der Pers JNC, Thomas G, Denotter CJ (1980) Interactions between plant odors and pheromone reception in small ermine moths (Lepidoptera: Yponomeutidae). Chem Senses 5:367–371

    Google Scholar 

  • Vergoz V, Schreurs HA, Mercer AR (2007) Queen pheromone blocks aversive learning in young worker bees. Science 317:384–386

    PubMed  CAS  Google Scholar 

  • Vickers NJ, Christensen TA (2003) Functional divergence of spatially conserved olfactory glomeruli in two related moth species. Chem Senses 28:325–338

    PubMed  Google Scholar 

  • Vickers NJ, Christensen TA, Baker TC, Hildebrand JG (2001) Odor-plume dynamics influence the brain’s olfactory code. Nature 410:466–470

    PubMed  CAS  Google Scholar 

  • Vickers NJ, Poole K, Linn CE (2005) Plasticity in central olfactory processing and pheromone blend discrimination following interspecies antennal imaginal disc transplantation. J Comp Neurol 491:141–156

    PubMed  Google Scholar 

  • Vosshall LB, Hansson BS (2011) A united nomenclature system for the insect olfactory coreceptor. Chem Senses 36:497–498

    PubMed  Google Scholar 

  • Vosshall LB, Stocker RE (2007) Molecular architecture of smell and taste in Drosophila. Ann Rev Neurosci 30:505–533

    PubMed  CAS  Google Scholar 

  • Wertheim B, Dicke M, Vet LEM (2002) Behavioural plasticity in support of a benefit for aggregation pheromone use in Drosophila melanogaster. Entomol Exp App 103:61–71

    CAS  Google Scholar 

  • Wilson RI (2008) Neural and behavioral mechanisms of olfactory perception. Curr Opin Neurobiol 18:408–412

    PubMed  CAS  Google Scholar 

  • Wilson RI, Laurent G (2005) Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe. J Neurosci 25:9069–9079

    PubMed  CAS  Google Scholar 

  • Wilson RI, Mainen ZF (2006) Early events in olfactory processing. Ann Rev Neurosci 29:163–201

    PubMed  CAS  Google Scholar 

  • Wiltrout C, Dogra S, Linster C (2003) Configurational and nonconfigurational interactions between odorants in binary mixtures. Behav Neurosci 117:236–245

    PubMed  CAS  Google Scholar 

  • Wright GA, Lutmerding A, Dudareva N, Smith BH (2005) Intensity and the ratios of compounds in the scent of snapdragon flowers affect scent discrimination by honeybees (Apis mellifera). J Comp Physiol A 191:105–114

    CAS  Google Scholar 

  • Wu W, Anton S, Löfstedt C, Hansson BS (1996) Discrimination among pheromone component blends by interneurons in male antennal lobes of two populations of the turnip moth, Agrotis segetum. Proc Natl Acad Sci USA 93(15):8022–8027

    PubMed  CAS  Google Scholar 

  • Yaksi E, Wilson RI (2010) Electrical coupling between olfactory glomeruli. Neuron 67:1034–1047

    PubMed  CAS  Google Scholar 

  • Yu DH, Ponomarey A, Davis RL (2004) Altered representation of the spatial code for Odors after olfactory classical conditioning: memory trace formation by synaptic recruitment. Neuron 42:437–449

    PubMed  CAS  Google Scholar 

  • Zhang QH, Schlyter F (2003) Redundancy, synergism, and active inhibitory range of non-host volatiles in reducing pheromone attraction in European spruce bark beetle Ips typographus. Oikos 101:299–310

    Google Scholar 

  • Zhang AJ, Linn C, Wright S, Prokopv R, Reissig W, Roelofs W (1999) Identification of a new blend of apple volatiles attractive to the apple maggot, Rhagoletis pomonella. J Chem Ecol 25:1221–1232

    CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank J.G. Hildebrand for his mentoring and for many stimulating discussions on the mechanisms of mixture processing. K. Byers and E. Sanders provided comments that greatly improved the quality of this manuscript. Support was provided by the National Science Foundation (DBI 1121692) (JAR) and the University of Washington, Seattle, Royal Research Fund (JAR), as well as the NSF Graduate Research Fellowship (DGE-0718124; to MRC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marie R. Clifford or Jeffrey A. Riffell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clifford, M.R., Riffell, J.A. Mixture and odorant processing in the olfactory systems of insects: a comparative perspective. J Comp Physiol A 199, 911–928 (2013). https://doi.org/10.1007/s00359-013-0818-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-013-0818-6

Keywords

Navigation