Skip to main content
Log in

Adult neurogenesis in the brain of the Mozambique tilapia, Oreochromis mossambicus

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Although the generation of new neurons in the adult nervous system (‘adult neurogenesis’) has been studied intensively in recent years, little is known about this phenomenon in non-mammalian vertebrates. Here, we examined the generation, migration, and differentiation of new neurons and glial cells in the Mozambique tilapia (Oreochromis mossambicus), a representative of one of the largest vertebrate taxonomic orders, the perciform fish. The vast majority of new cells in the brain are born in specific proliferation zones of the olfactory bulb; the dorsal and ventral telencephalon; the periventricular nucleus of the posterior tuberculum, optic tectum, and nucleus recessi lateralis of the diencephalon; and the valvula cerebelli, corpus cerebelli, and lobus caudalis of the cerebellum. As shown in the olfactory bulb and the lateral part of the valvula cerebelli, some of the young cells migrate from their site of origin to specific target areas. Labeling of mitotic cells with the thymidine analog 5-bromo-2′-deoxyuridine, combined with immunostaining against the neuron-specific marker protein Hu or against the astroglial marker glial fibrillary acidic protein demonstrated differentiation of the adult-born cells into both neurons and glia. Taken together, the present investigation supports the hypothesis that adult neurogenesis is an evolutionarily conserved vertebrate trait.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A:

Anterior thalamic nucleus

AC:

Anterior commissure

BO:

Olfactory bulb

BOgl :

Glomerular layer of the olfactory bulb

BOgra :

Granular layer of the olfactory bulb

bv:

Blood vessel

CC:

Crista cerebellaris

CCe:

Corpus cerebelli

CCegra :

Granular layer of corpus cerebelli

CCemol :

Molecular layer of corpus cerebelli

CE:

Central nucleus of the inferior lobe

ch:

Horizontal commissure

CM:

Corpus mamillare

CP:

Central posterior thalamic nucleus

Cven:

Ventral rhombencephalic commissure

D:

Dorsal telencephalon

DA:

Anterior part of the dorsal telencephalon

DC:

Dorsocentral telencephalon

DCa:

Anterior subdivision of the dorsal central telencephalon

DCad:

Dorsal part of the anterior subdivision of the dorsocentral telencephalon

DCm:

Medial subdivision of the dorsocentral telencephalon

DD:

Dorsal division of the dorsal telencephalon

DFl:

Nucleus diffusus lateralis of the inferior lobe

DFld:

Dorsal subdivision of nucleus diffusus lateralis of the inferior lobe

DFlv:

Ventral subdivision of nucleus diffusus lateralis of the inferior lobe

DFm:

Nucleus diffusus medialis of the inferior lobe

DL:

Dorsolateral telencephalon

DLa:

Anterior subdivision of the dorsolateral telencephalon

DLd:

Dorsal subdivision of the dosolateral telencephalon

DLp:

Posterior subdivision of the dorsolateral telencephalon

DLv:

Ventral subdivision of the dorsolateral telencephalon

DM:

Dorsomedial telencephalon

DMa:

Anterior subdivision of the dorsomedial telencephalon

DMdd:

Dorsal part of the dorsal subdivision of the dorsomedial telencephalon

DMdv:

Ventral part of the dorsal subdivision of the dorsomedial telencephalon

DMv:

Ventral subdivision of the dorsomedial telencephalon

DMvd:

Dorsal part of the ventral subdivision of the dorsomedial telencephalon

DMvv:

Ventral part of the ventral subdivision of the dorsomedial telencephalon

DP:

Dorsal posterior thalamic nucleus

Dp:

Posterior part of dorsal telencephalon

EG:

Eminentia granularis

G:

Glomerular nucleus

GC:

Central gray

H:

Habenula

Hv:

Ventral zone of the periventricular hypothalamus

IL:

Inferior lobe of the hypothalamus

ILdl:

Dorsolateral subdivision of the inferior lobe of the hypothalamus

ILvm:

Ventromedial subdivision of the inferior lobe of the hypothalamus

IPn:

Interpeduncular nucleus

LCe:

Lobus caudalis

LCegra :

Granular layer of the lobus caudalis

LH:

Lateral hypothalamic nucleus

LVII:

Lobus facialis

LX:

Lobus vagi

MLF:

Medial longitudinal fascicle

mol:

Molecular layer

nIII:

Nucleus oculomotorius

nRL:

Nucleus recessi lateralis

nRLl:

Lateral part of the nucleus recessi lateralis

nRLm:

Medial part of the nucleus recessi lateralis

nRP:

Nucleus recessi posterioris

nVd:

Descending trigeminal nucleus

nX:

Nucleus X (unidentified nucleus located between tOv and DFld)

P:

Preoptic region

PGm:

Medial part of the preglomerular nucleus

PP:

Periventricular preoptic nucleus

PPa:

Anterior part of the periventricular preoptic nucleus

PPm:

Medial part of the periventricular preoptic nucleus

PPp:

Posterior part of the periventricular preoptic nucleus

RL:

Recessus lateralis

RP:

Recessus posterioris

RV:

Rhombencephalic ventricle

Sc:

Suprachiasmatic nucleus

TA:

Nucleus anterior tuberis

TeO:

Optic tectum

TGN:

Tertiary gustatory nucleus

TGNl:

Lateral part of the tertiary gustatory nucleus

TGNm:

Medial part of the tertiary gustatory nucleus

TL:

Torus longitudinalis

TLA:

Torus lateralis

TLAi:

Inferior subdivision of the torus lateralis

tO:

Optic tract

tOd:

Tractus opticus dorsalis

tolfm:

Medial part of the olfactory tract

tOv:

Tractus opticus ventralis

TP:

Nucleus of the posterior tuberculum

TPP:

Periventricular nucleus of the posterior tuberculum

TS:

Torus semicircularis

tTB:

Tractus tecto-bulbaris

V:

Ventral telencephalon

v:

Ventricle

Val:

Lateral part of valvula cerebelli

Valgra :

Granular layer of the lateral part of valvula cerebelli

Valmol :

Molecular layer of the lateral part of the valvula cerebelli

Vam:

Medial part of valvula cerebelli

Vamgra :

Granular layer of the medial part of the valvula cerebelli

Vammol :

Molecular layer of the medial part of the valvula cerebelli

Vd:

Dorsal part of the ventral telencephalon

VLR:

Ventrolateral rhombencephalon

VM:

Ventromedial thalamic nucleus

Vs:

Supracommissural part of the ventral telencephalon

VVm:

Medial part of the ventral subdivision of the ventral telencephalon

References

  • Alonso JR, Lara J, Vecino E, Coveñas R, Aijón J (1989) Cell proliferation in the olfactory bulb of adult freshwater teleosts. J Anat 163:155–163

    PubMed  CAS  Google Scholar 

  • Altman J (1969) Autoradiographic and histological studies of postnatal neurogenesis: IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 137:433–458

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–336

    Article  PubMed  CAS  Google Scholar 

  • Alunni A, Hermel JM, Heuzé A, Bourrat F, Jamen F, Joly JS (2010) Evidence for neural stem cells in the medaka optic tectum proliferation zones. Dev Neurobiol 70:693–713

    Article  PubMed  CAS  Google Scholar 

  • Baerends GP, Baerends van Roon JM (1950) An introduction to the study of cichlid fishes. Behaviour Suppl 1:1–242

  • Barnea A, Nottebohm F (1994) Seasonal recruitment of hippocampal neurons in adult free-ranging black-capped chickadees. Proc Natl Acad Sci USA 91:11217–11221

    Article  PubMed  CAS  Google Scholar 

  • Bédard A, Parent A (2004) Evidence of newly generated neurons in the human olfactory bulb. Dev Brain Res 151:159–168

    Article  Google Scholar 

  • Bonfanti L, Rossi F, Zupanc GKH (2011) Towards a comparative understanding of adult neurogenesis. Eur J Neurosci 34:845–846

    Article  PubMed  Google Scholar 

  • Braford MR (1995) Comparative aspects of forebrain organization in the ray-finned fishes: touchstones or not? Brain Behav Evol 46:259–274

    Article  PubMed  Google Scholar 

  • Butler AB (2000) Topography and topology of the teleost telencephalon: a paradoxon resolved. Neurosci Lett 293:95–98

    Article  PubMed  CAS  Google Scholar 

  • Byrd CA, Brunjes PC (2001) Neurogenesis in the olfactory bulb of adult zebrafish. Neuroscience 105:793–801

    Article  PubMed  CAS  Google Scholar 

  • Chapouton P, Webb KJ, Stigloher C, Alunni A, Adolf B, Hesl B, Topp S, Kremmer E, Bally-Cuif L (2011) Expression of hairy/enhancer of split genes in neural progenitors and neurogenesis domains of the adult zebrafish brain. J Comp Neurol 519:1748–1769

    Article  PubMed  CAS  Google Scholar 

  • Clint SC, Zupanc GKH (2001) Neuronal regeneration in the cerebellum of adult teleost fish, Apteronotus leptorhynchus: guidance of migrating young cells by radial glia. Dev Brain Res 130:15–23

    Article  CAS  Google Scholar 

  • Corotto FS, Henegar JA, Maruniak JA (1993) Neurogenesis persists in the subependymal layer of the adult mouse brain. Neurosci Lett 149:111–114

    Article  PubMed  CAS  Google Scholar 

  • Corwin JT (1981) Postembryonic production and aging of inner ear hair cells in sharks. J Comp Neurol 201:541–553

    Article  PubMed  CAS  Google Scholar 

  • Curtis MA, Kam M, Nannmark U, Anderson MF, Axell MZ, Wikkelso C, Holtas S, van Roon-Mom WMC, Björk-Eriksson T, Nordborg C, Frisén J, Dragunow M, Faull RLM, Eriksson PS (2007) Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315:1243–1249

    Article  PubMed  CAS  Google Scholar 

  • Ekström P, Johnsson C-M, Ohlin L-M (2001) Ventricular proliferation zones in the brain of an adult teleost fish and their relation to neuromeres and migration (secondary matrix) zones. J Comp Neurol 436:92–110

    Article  PubMed  Google Scholar 

  • Eng LF, Ghirnikar RS, Lee YL (2000) Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem Res 25:1439–1451

    Article  PubMed  CAS  Google Scholar 

  • Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    Article  PubMed  CAS  Google Scholar 

  • Fernández AS, Rosillo JC, Casanova G, Olivera-Bravo S (2011) Proliferation zones in the brain of adult fish Austrolebias (Cyprinodontiform[sic]: Rivulidae): a comparative study. Neuroscience 189:12–24

    Article  PubMed  Google Scholar 

  • Fine ML (1989) Embryonic, larval and adult development of the sonic neuromuscular system in the oyster toadfish. Brain Behav Evol 34:13–24

    Article  PubMed  CAS  Google Scholar 

  • Gage FH, Kempermann G, Song H (eds) (2008) Adult Neurogenesis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Ganz J, Kaslin J, Hochmann S, Freudenreich D, Brand M (2010) Heterogeneity and Fgf dependence of adult neural progenitors in the zebrafish telencephalon. Glia 58:1345–1363

    PubMed  Google Scholar 

  • Gould E, Reeves AJ, Fallah M, Tanapat P, Gross CG, Fuchs E (1999) Hippocampal neurogenesis in adult Old World primates. Proc Natl Acad Sci USA 96:5263–5267

    Article  PubMed  CAS  Google Scholar 

  • Grandel H, Kaslin J, Ganz J, Wenzel I, Brand M (2006) Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate. Dev Biol 295:263–277

    Article  PubMed  CAS  Google Scholar 

  • Higgs DM, Souza MJ, Wilkins HR, Presson JC, Popper AN (2002) Age- and size-related changes in the inner ear and hearing ability of the adult zebrafish (Danio rerio). J Assoc Res Otolaryngol 3:174–184

    Article  PubMed  Google Scholar 

  • Hinsch K, Zupanc GKH (2007) Generation and long-term persistence of new neurons in the adult zebrafish brain: a quantitative analysis. Neuroscience 146:679–696

    Article  PubMed  CAS  Google Scholar 

  • Janssen J, Coombs S, Hoekstra D, Platt C (1987) Anatomy and differential growth of the lateral line system of the mottled sculpin, Cottus bairdi (Scorpaeniformes: Cottidae). Brain Behav Evol 30:210–229

    PubMed  CAS  Google Scholar 

  • Johns PR, Easter SSJ (1977) Growth of the adult goldfish eye: II. Increase in retinal cell number. J Comp Neurol 176:331–342

    Article  PubMed  CAS  Google Scholar 

  • Kaplan MS, Bell DH (1984) Mitotic neuroblasts in the 9-day-old and 11-month-old rodent hippocampus. J Neurosci 4:1429–1441

    PubMed  CAS  Google Scholar 

  • Kaplan MS, McNelly NA, Hinds JW (1985) Population dynamics of adult-formed granule neurons of the rat olfactory bulb. J Comp Neurol 239:117–125

    Article  PubMed  CAS  Google Scholar 

  • Kaslin J, Ganz J, Geffarth M, Grandel H, Hans S, Brand M (2009) Stem cells in the adult zebrafish cerebellum: initiation and maintenance of a novel stem cell niche. J Neurosci 29:6142–6153

    Article  PubMed  CAS  Google Scholar 

  • Kempermann G (2011) Adult Neurogenesis. Oxford University Press, New York

    Google Scholar 

  • Kempermann G, Gast D, Kronenberg G, Yamaguchi M, Gage FH (2003) Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Development 130:391–399

    Article  PubMed  CAS  Google Scholar 

  • Kornack DR, Rakic P (1999) Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc Natl Acad Sci USA 96:5768–5773

    Article  PubMed  CAS  Google Scholar 

  • Koumans JTM, Akster HA (1995) Myogenic cells in development and growth of fish. Comp Biochem Physiol 110A:3–20

    Article  CAS  Google Scholar 

  • Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264:1145–1148

    Article  PubMed  CAS  Google Scholar 

  • Lois C, García-Verdugo JM, Alvarez-Buylla A (1996) Chain migration of neuronal precursors. Science 271:978–981

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Garcia C, Molowny A, Garcia-Verdugo JM, Ferrer I (1988) Delayed postnatal neurogenesis in the cerebral cortex of lizards. Dev Brain Res 471:167–174

    Article  CAS  Google Scholar 

  • Luskin MB (1993) Restricted proliferation and migration of postnatally generated neurons from the forebrain subventricular zone. Neuron 11:173–189

    Article  PubMed  CAS  Google Scholar 

  • Marusich MF, Weston JA (1992) Identification of early neurogenic cells in the neural crest lineage. Dev Biol 149:295–306

    Article  PubMed  CAS  Google Scholar 

  • Nieuwenhuys R (2011) The development and general morphology of the telencephalon of actinopterygian fishes: synopsis, documentation and commentary. Brain Struct Funct 215:141–157

    Article  PubMed  Google Scholar 

  • Nieuwenhuys R, Meek J (1990) The telencephalon of actinopterygian fishes. In: Jones EG, Peters A (eds) Comparative structure and evolution of the cerebral cortex. Plenum, New York, pp 31–73

    Google Scholar 

  • Northcutt RG (1995) The forebrain of gnathostomes: in search of a morphotype. Brain Behav Evol 46:275–318

    Article  PubMed  CAS  Google Scholar 

  • Northcutt RG, Braford MR (1980) New observations on the organization and evolution of the telencephalon of actinopterygian fishes. In: Ebbesson SOE (ed) Comparative neurology of the telencephalon. Plenum, New York, pp 41–98

    Chapter  Google Scholar 

  • Oliveira RF (2009) Social behavior in context: hormonal modulation of behavioral plasticity and social competence. Integr Comp Biol 49:423–440

    Article  PubMed  Google Scholar 

  • Oliveira RF, Canário AVM (2001) Hormones and social behaviour in cichlid fishes: a case study in the Mozambique tilapia. In: Coleman RM (ed) Cichlid research: state of the art special issue of the J Aquaricult Aquat Sci 9:109–129. John Farrell Kuhns, Parkville

    Google Scholar 

  • Ott R, Zupanc GKH, Horschke I (1997) Long-term survival of postembryonically born cells in the cerebellum of gymnotiform fish, Apteronotus leptorhynchus. Neurosci Lett 221:185–188

    Article  PubMed  CAS  Google Scholar 

  • Pellegrini E, Mouriec K, Anglade I, Menuet A, Le Page Y, Gueguen MM, Marmignon MH, Brion F, Pakdel F, Kah O (2007) Identification of aromatase-positive radial glial cells as progenitor cells in the ventricular layer of the forebrain in zebrafish. J Comp Neurol 501:150–167

    Article  PubMed  CAS  Google Scholar 

  • Pencea V, Bingaman KD, Freedman LJ, Luskin MB (2001) Neurogenesis in the subventricular zone and rostral migratory stream of the neonatal and adult primate forebrain. Exp Neurol 172:1–16

    Article  PubMed  CAS  Google Scholar 

  • Pepels PPLM, Meek J, Wendelaar Bonga SE, Balm PHM (2002) Distribution and quantification of corticotropin-releasing hormone (CRH) in the brain of the teleost fish Oreochromis mossambicus (tilapia). J Comp Neurol 453:247–268

    Article  PubMed  Google Scholar 

  • Portavella M, Torres B, Salas C (2004) Avoidance response in goldfish: emotional and temporal involvement of medial and lateral telencephalic pallium. J Neurosci 24:2335–2342

    Article  PubMed  CAS  Google Scholar 

  • Raymond PA, Easter SS Jr, Burnham JA, Powers MK (1983) Postembryonic growth of the optic tectum in goldfish. II. Modulation of cell proliferation by retinal fiber input. J Neurosci 3:1092–1099

    PubMed  CAS  Google Scholar 

  • Rodríguez F, López JC, Vargas JP, Gómez Y, Broglio C, Salas C (2002) Conservation of spatial memory function in the pallial forebrain of reptiles and ray-finned fishes. J Neurosci 22:2894–2903

    PubMed  Google Scholar 

  • Rothenaigner I, Krecsmarik M, Hayes JA, Bahn B, Lepier A, Fortin G, Gotz M, Jagasia R, Bally-Cuif L (2011) Clonal analysis by distinct viral vectors identifies bona fide neural stem cells in the adult zebrafish telencephalon and characterizes their division properties and fate. Development 138:1459–1469

    Article  PubMed  CAS  Google Scholar 

  • Rowe RWD, Goldspink G (1969) Muscle fibre growth in five different muscles in both sexes of mice. J Anat 104:519–530

    PubMed  CAS  Google Scholar 

  • Rowlerson A, Veggetti A (2001) Cellular mechanisms of post-embryonic muscle growth in aquaculture species. In: Johnston IA (ed) Muscle development and growth. Academic Press, San Diego, pp 103–140

    Chapter  Google Scholar 

  • Sanai N, Tramontin AD, Quinones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, Lawton MT, McDermott MW, Parsa AT, García-Verdugo JM, Berger MS, Alvarez-Buylla A (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427:740–744

    Article  PubMed  CAS  Google Scholar 

  • Seri B, García-Verdugo JM, McEwen BS, Alvarez-Buylla A (2001) Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 21:7153–7160

    PubMed  CAS  Google Scholar 

  • Sîrbulescu RF, Ilieş I, Zupanc GKH (2009) Structural and functional regeneration after spinal cord injury in the weakly electric teleost fish, Apteronotus leptorhynchus. J Comp Physiol A 195:699–714

    Article  Google Scholar 

  • Soutschek J, Zupanc GKH (1996) Apoptosis in the cerebellum of adult teleost fish, Apteronotus leptorhynchus. Dev Brain Res 97:279–286

    Article  CAS  Google Scholar 

  • Takeda A, Nakano M, Goris RC, Funakoshi K (2008) Adult neurogenesis with 5-HT expression in lesioned goldfish spinal cord. Neuroscience 151:1132–1141

    Article  PubMed  CAS  Google Scholar 

  • Vargas JP, Rodríguez F, López JC, Arias JL, Salas C (2000) Spatial learning-induced increase in the argyophilic nucleolar organizer region of dorsolateral telencephalic neurons in goldfish. Brain Res 865:77–84

    Article  PubMed  CAS  Google Scholar 

  • Watanabe WO, Losordo TM, Fitzsimmons K, Hanley F (2002) Tilapia production in the Americas: technological advances, trends, and challenges. Rev Fish Sci 10:465–498

    Article  Google Scholar 

  • Weatherley AH, Gill HS (1985) Dynamics of increase in muscle fibres in fishes in relation to size and growth. Experientia 41:353–354

    Article  Google Scholar 

  • Winner B, Cooper-Kuhn CM, Aigner R, Winkler J, Kuhn HG (2002) Long-term survival and cell death of newly generated neurons in the adult rat olfactory bulb. Eur J Neurosci 16:1681–1689

    Article  PubMed  Google Scholar 

  • Zakon HH (1984) Postembryonic changes in the peripheral electrosensory system of a weakly electric fish: addition of receptor organs with age. J Comp Neurol 228:557–570

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman AM, Lowery MS (1999) Hyperplastic development and hypertrophic growth of muscle fibers in the white seabass (Atractoscion nobilis). J Exp Zool 284:299–308

    Article  PubMed  Google Scholar 

  • Zupanc GKH (1999) Neurogenesis, cell death and regeneration in the adult gymnotiform brain. J Exp Biol 202:1435–1446

    PubMed  CAS  Google Scholar 

  • Zupanc GKH (2006) Adult neurogenesis and neuronal regeneration in the teleost fish brain: implications for the evolution of a primitive vertebrate trait. In: Bullock TH, Rubenstein LR (eds) The evolution of nervous systems in non-mammalian vertebrates. Academic Press, Oxford, pp 485–520

    Google Scholar 

  • Zupanc GKH (2008a) Adult neurogenesis and neuronal regeneration in the brain of teleost fish. J Physiol Paris 102:357–373

    Article  PubMed  Google Scholar 

  • Zupanc GKH (2008b) Adult neurogenesis in teleost fish. In: Gage FH, Kempermann G, Song H (eds) Adult neurogenesis. Cold Spring Harbor Laboratory Press, New York, pp 571–592

    Google Scholar 

  • Zupanc GKH (2009) Towards brain repair: insights from teleost fish. Semin Cell Dev Biol 20:683–690

    Article  PubMed  Google Scholar 

  • Zupanc GKH (2011) Adult neurogenesis in teleost fish. In: Seki T, Sawamoto K, Parent JM, Alvarez-Buylla A (eds) Neurogenesis in the adult brain I. Springer, Tokyo, pp 137–168

    Chapter  Google Scholar 

  • Zupanc GKH, Horschke I (1995) Proliferation zones in the brain of adult gymnotiform fish: a quantitative mapping study. J Comp Neurol 353:213–233

    Article  PubMed  CAS  Google Scholar 

  • Zupanc GKH, Horschke I, Ott R, Rascher GB (1996) Postembryonic development of the cerebellum in gymnotiform fish. J Comp Neurol 370:443–464

    Article  PubMed  CAS  Google Scholar 

  • Zupanc GKH, Hinsch K, Gage FH (2005) Proliferation, migration, neuronal differentiation, and long-term survival of new cells in the adult zebrafish brain. J Comp Neurol 488:290–319

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Iulian Ilieş for helpful comments on a previous version of the manuscript. This study was funded by Tönjes-Vagt-Stiftung and Deutscher Akademischer Austauschdienst (to G.K.H.Z.); Gabinete de Relações Internacionais da Ciência e do Ensino Superior German-Portuguese exchange grant and Fundação Portuguesa para a Ciência e a Tecnologia research grant # PTDC/PSI/71811/2006 (to R.F.O.); and Ph.D.fellowship # SFRH/BD/44848/2008 (to M.C.T.). All experiments were carried out in accordance with the relevant law, the Deutsches Tierschutzgesetz of 1998.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günther K. H. Zupanc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teles, M.C., Sîrbulescu, R.F., Wellbrock, U.M. et al. Adult neurogenesis in the brain of the Mozambique tilapia, Oreochromis mossambicus . J Comp Physiol A 198, 427–449 (2012). https://doi.org/10.1007/s00359-012-0721-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-012-0721-6

Keywords

Navigation